'Pressure' is (force) / (area).
The only choice with those units is #1 .
D = distance between the cars at the start of time = 680 km
v₁ = speed of one car
v₂ = speed of other car = v₁ - 10
t = time taken to meet = 4 h
distance traveled by one car in time "t" + distance traveled by other car in time "t" = D
v₁ t + v₂ t = D
(v₁ + v₂) t = D
inserting the values
(v₁ + v₁ - 10) (4) = 680
v₁ = 90 km/h
rate of slower car is given as
v₂ = v₁ - 10
v₂ = 90 - 10 = 80 km/h
Answer:
375 ms
Explanation:
the frequency of metronome , f = 160 beats per minute
f = 160 /60 beats per sec
f = 2.67 beats /s
the period of a single beat , T = 1/f
T = 1/2.67 s
T = 0.375 s = 375 ms
the period of a single beat is 375 ms
Compounds are formed as a result of elements that are joined and held together by strong forces called chemical bonds.
Answer:
The mass rate of the cooling water required is: 
Explanation:
First, write the energy balance for the condensator: The energy that enters to the equipment is the same that goes out from it; consider that there is no heat transfer to the surroundings and kinetic and potential energy changes are despreciable.

Where w refers to the cooling water and s to the steam flow. Reorganizing,

Write the difference of enthalpy for water as Cp (Tout-Tin):

This equation will let us to calculate the mass rate required. Now, let's get the enthalpy and Cp data. The enthalpies can be read from the steam tables (I attach the tables I used). According to that,
and
can be calculated as:
.
The Cp of water at 25ºC (which is the expected average temperature for water) is: 4.176
. If the average temperature is actually different, it won't mean a considerable mistake. Also we know that
, so let's work with the limit case, which is
to calculate the minimum cooling water mass rate required (A higher one will give a lower temperature difference as a result). Finally, replace data:
