Answer:
1275J
Explanation:
Given parameters:
Force on box = 85N
Distance moved = 15m
Unknown:
Work done = ?
Solution:
Work done is the amount of force applied on a body to move it through a specific distance.
Work done = Force x distance
Now insert the parameters and solve;
Work done = 85 x 15 = 1275J
Hihi!
The correct answer is B) <span>neutron keep protons apart so they don’t repel
each other! </span><span>The </span>neutron<span> also adds mass to the </span>atom<span>!
</span>
I hope I helped!
-Jailbaitasmr
Answer:
16250 kgm/s due south
Explanation:
Applying,
M = mv................. Equation 1
Where M = momentum, m = mass, v = velocity.
From the car,
Given: m = 1000 kg, v = 6.5 m/s
Substitute these values into equation 1
M = 1000(6.5)
M = 6500 kgm/s
For the truck,
Given: m = 3500 kg, v = 6.5 m/s
Substitute these values into equation 1
M' = 3500(6.5)
M' = 22750 kgm/s.
Assuming South to be negative direction,
From the question,
Total momentum of the two vehicles = (6500-22750)
Total momentum of the two vehicles = -16250 kgm/s
Hence the total momentum of the two vehicles is 16250 kgm/s due south
Answer:
W = 145.8 [N]
Explanation:
To solve this problem we must remember that weight is defined as the product of mass by gravity, in this case lunar gravity.
W = m*g
where:
m = mass = 90 [kg]
g = gravity acceleration = 1.62 [kg/m²]
W = 90*1.62
W = 145.8 [N]
Knowing the initial velocity and angle, the horizontal range formula is given by R= V^2sin(2teta) / g, so we can get
sin(2teta)=Rg/V^2
sin(2teta)= (180 x 9.8)/ 80^2= 0.27, sin(2teta)=0.27, 2teta=arcsin(0.27)=15.66, so teta=15.66/2
teta=7.83°