Explanation:
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
Therefore, more is the surface area occupied by the carbon chain more will be the dispersion forces present in it. Hence, less is the surface area occupied by a molecule less will be the dispersion forces present in it.
Hence, the given molecules are organized from largest to smallest dispersion forces as follows.
>
>
>
>
> 
Answer: A
Explanation: Mass and volume is the amount, amount doesn’t make the phase of a matter change.
<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. So, we calculate as follows:
Molarity = 15.9 g BaCl2 ( 1 mol / 208.23 g ) / .375 L = 0.204 mol / L</span>
The answer is D, far apart and have weak attractive forces between them. The ideal gas means that the volume of molecule and the forces between them can be ignored.
The question is incomplete, here is the complete question:
Silicon reacts with carbon dioxide to form silicon carbide and silicon dioxide. Write the balanced chemical equation.
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
The balanced chemical equation for the reaction of silicon and carbon dioxide follows:

By Stoichiometry of the reaction:
2 moles of silicon reacts with 1 mole of carbon dioxide gas to produce 1 mole of silicon carbide and 1 mole of silicon dioxide
Hence, the balanced chemical equation is written above.