The appropriate answer is a. it involves a change in the molecular structure of the substance. A change in phase or state is referred to as a physical change. For example...liquid water freezing is a physical change because the state changes but solid water is still H20. Separating water into its constituent atoms, hydrogen and oxygen is a chemical change because the molecular structure of water is now non existent.
Its what the formula of a coupon between PB to plus plus to
4.20 mol Al would react completely with 4.20 x (1/2) = 2.10 mol Fe2O3, but there is not that much Fe2O3 present, so Fe2O3 is the limiting reactant. (1.75 mol Fe2O3) x (2/1) x ( 55.8452 g Fe/mol) = 195 g Fe 3 MgO + 2 H3PO4 → Mg3(PO4)2 + 3 H2O (15.0 g MgO) / (40.3045 g MgO/mol) = 0.37217 mol MgO (18.5 g H3PO4) / (97.9953 g H3PO4/mol) = 0.18878 mol H3PO4 0.18878 mol H3PO4 would react completely with 0.18878 x (3/2) = 0.28317 mole of MgO, but there is more MgO present than that, so MgO is in excess and H3PO4 is the limiting reactant. Now we must consider why the problem tells us "17.6g of Mg3(PO4)2 is obtained". The first possibility is that it's just there for the sake of confusion -- in which case ignore it and proceed this way: ((0.37217 mol MgO initially) - (0.28317 mole MgO reacted)) x (40.3045 g MgO/mol) = 3.59 g MgO left over However, if the amount of magnesium phosphate obtained is given because the reaction was stopped before it was complete, the amount obtained governs the amount reacted and the amount left over, so proceed this way: (17.6g Mg3(PO4)2) / (262.8581 g Mg3(PO4)2/mol) x (3/1) = 0.20087 mol MgO reacted ((0.37217 mol MgO initially) - (0.20087 mole MgO reacted)) x (40.3045 g MgO/mol) = 6.90 MgO left over
Answer: determine how they break
Explanation:
hope this helps!
Answer : The volume of the balloon at the new location is, 591.3 L
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.995 atm
= final pressure of gas = 0.720 atm
= initial volume of gas = 500 L
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the volume of the balloon at the new location is, 591.3 L