Answer:

Explanation:
Hello,
In this case, for first order reactions, we can use the following integrated rate law:
![ln(\frac{[A]}{[A]_0} )=kt](https://tex.z-dn.net/?f=ln%28%5Cfrac%7B%5BA%5D%7D%7B%5BA%5D_0%7D%20%29%3Dkt)
Thus, we compute the time as shown below:
![t=-\frac{ln(\frac{[A]}{[A]_0} )}{k}=- \frac{ln(\frac{0.220M}{0.690M} )}{0.55s^{-1}} \\\\t=-\frac{-1.14}{0.550s^{-1}}\\ \\t=2.08s](https://tex.z-dn.net/?f=t%3D-%5Cfrac%7Bln%28%5Cfrac%7B%5BA%5D%7D%7B%5BA%5D_0%7D%20%29%7D%7Bk%7D%3D-%20%5Cfrac%7Bln%28%5Cfrac%7B0.220M%7D%7B0.690M%7D%20%29%7D%7B0.55s%5E%7B-1%7D%7D%20%5C%5C%5C%5Ct%3D-%5Cfrac%7B-1.14%7D%7B0.550s%5E%7B-1%7D%7D%5C%5C%20%5C%5Ct%3D2.08s)
Best regards.
On a chilly, humid evening, intermolecular forces enable fog to form. The gaseous water molecules condense as a result of powerful molecular interactions.
What force allows fog formation?
From the south, warm, moist air is brought in, and if there is snow or cool precipitation on the ground, it will come into touch with the warm, moist breezes. The air coming in will cool as a result of this air-ground contact. Dew point rises at that position, leading to high humidity and the formation of fog.
What is molecular interactions?
Interactions between molecules or between atoms without bonds are referred to as molecular interactions. There are three types of molecular interactions: cohesive (attraction between like), adhesive (attraction between unlike), and repulsive forces.
Learn more about molecular interactions: brainly.com/question/20910897
#SPJ4
Moles ratio:
1 S<span> + 1 </span><span>O2</span><span> = 1 </span><span>SO<span>2
</span></span>
1 mole S -------------- 1 mole SO2
? moles S ------------ 0.567 moles SO2
0,567 x 1 / 1
= 0.567 moles of S
<span>100 g of KClO3 @ 122.55 g/mol = 0.816 moles of KClO3
by the reaction
2 KClO3 --> 2 KCl & 3 O2
0.816 moles of KClO3 @ 3 moles O2 / 2 moles KClO3 = 1.224 moles of O2 can be made
using molar mass
1.224 moles of O2 @ 32.0 g/mol =
39.2 grams of O2 can be made</span>