Answer:
D. The period would decrease by sqrt (2)
Explanation:
The period of a mass-spring system is given by:

where
m is the mass
k is the spring constant of the spring
If the spring constant is doubled,
k' = 2k
So the new period will be

So the correct answer is
D. The period would decrease by sqrt (2)
Answer:
The magnitude of the external electric field at P will reduce to 2.26 x 10⁶ N/C, but the direction is still to the right.
Explanation:
From coulomb's law, F = Eq
Thus,
F = E₁q₁
F = E₂q₂
Then
E₂q₂ = E₁q₁

where;
E₂ is the external electric field due to second test charge = ?
E₁ is the external electric field due to first test charge = 4 x 10⁶ N/C
q₁ is the first test charge = 13 mC
q₂ is the second test charge = 23 mC
Substitute in these values in the equation above and calculate E₂.

The magnitude of the external electric field at P will reduce to 2.26 x 10⁶ N/C when 13 mC test charge is replaced with another test charge of 23 mC.
However, the direction of the external field is still to the right.
The formula for average speed is

So we can just substitute our data.

- its the result
Answer:
9000RPM
Explanation:
"Angular velocity" is directly related to kinetic energy, that is, the Kinetic energy equation would allow an approximation to the resolution investigated in the problem.
The equation for KE is given by:

Now, starting from there towards the <em>Angular equation of kinetic energy</em>, the moment of inertia (i) is used instead of mass (m), and angular velocity (w) instead of linear velocity (V)
That's how we get

calculating the inertia for a solid cylindrical disk, of
m = 400kg
r = 1.2 / 2 = 0.6m

We understand that the total kinetic energy is 3.2 * 10 ^ 7J, like this:



Thus,
943 rad / s ≈ 9000 rpm
Answer:
Frequency change by a factor of 2.
(b) is correct option.
Explanation:
Given that,
Mass = 16 kg
Replaced mass = 4 kg
We need to calculate the frequency
Using formula of frequency

Put the value into the formula

....(I)

...(II)

Hence, Frequency change by a factor of 2.