Answer: An Incident on Route 12 is presented here in a high quality paperback edition. This popular classic work by James H. Schmitz is in the English language, and may not include graphics or images from the original edition.
Explanation: I HOPE THAT HELPED
Complete Question
A 10 gauge copper wire carries a current of 20 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm2.)
mm/s
Answer:
The drift velocity is 
Explanation:
From the question we are told that
The current on the copper is 
The cross-sectional area is
The number of copper atom in the wire is mathematically evaluated

Where
is the density of copper with a value 
is the Avogadro's number with a value 
Z is the molar mass of copper with a value 
So
Given the 1 atom is equivalent to 1 free electron then the number of free electron is

The current through the wire is mathematically represented as

substituting values

=> 
Answer:
<h2>23.33 kg </h2>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>23.33 kg</h3>
Hope this helps you
I think it’s the third one idk tho
Answer:
C) 2.44 × 106 N/C
Explanation:
The electric flux through a circular loop of wire is given by

where
E is the electric field
A is the cross-sectional area
is the angle between the direction of the electric field and the normal to A
The flux is maximum when
, so we are in this situation and therefore
, so we can write

Here we have:
is the flux
d = 0.626 m is the diameter of the coil, so the radius is
r = 0.313 m
and so the area is

And so, we can find the magnitude of the electric field:
