Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s
Bike
because it involves lots of angular mechanics that allow it to balance itself when moving.
all other examples have a constant force being applied into the system which is very easy to formulate, therefore they are simple machines.
Answer:
Camilla
Explanation:
I got it right on edge. :)
Answer:
The electron cloud
Explanation:
Metallic bonds result from interaction of positively charged metal ions with free valence electrons which now forms an electron cloud around the metal ions. Electrostatic interaction between the metal ions and the electron cloud holds the metal ions together in the metallic bond.
Answer:
real, and then virtual
Explanation:
A converging lens is known as convex lens. This lens is called converging lens because it converges all light rays incident on the lens and parallel to the principal axis at the focus.
The nature of image formed by objects placed in front of this lens as mostly REAL IMAGES. The image formed becomes virtual only when the object is almost in close contact with the lens.
Based on the explanation, it can be deduced that an object placed far from a convex lens forms real images but as we move closer to the lens (almost touching the lens), the image formed overtime tends to be virtual.