Atomic mass of Br = 79.904
<span>Now lets say y% is abundance of 79Br. </span>
<span>Then abundance of 81Br = (100 - y) </span>
<span>mass due to 79Br = 78.9183 * y/100 = 0.789183y
</span><span>mass due to 81Br = 80.9163 x (100 - y)/100 = 0.809163(100 - y) </span>
<span>Therfore</span>
<span>0.789183y+ 0.809163(100 - y) = 79.904 </span>
<span>0.789183y + 80.9163 - 0.809163y = 79.904 </span>
<span> - 0.01998y= 79.904 - 80.9163
= - 1.0123 </span>
<span>y = 1.0123/0.01998 = 50.67% </span>
<span> 79Br = 50.67% </span>
<span>now
81Br = 100 - 50.67 = 49.33%
hope this helps</span>
Answer:
If you mean the number of atoms in 8g of oxygen, it's 3.011 x 10^23 atoms.
Explanation:
Convert the grams to moles. 8 grams of oxygen is 0.5 moles. Then multiply the number of moles by Avogadro's number: 6.022 x 10^23.
Answer:
AgI, AgBr, AgCl and Ag₂CrO₄
Explanation:
Ksp (product solubility constant) is defined as the equilibrium constant of the general reaction:
XₐYₙ(s) → aXⁿ⁺(aq) + nYᵃ⁻(aq)
<em>Where X is cation and Y is anion.</em>
Ksp = [aXⁿ⁺]ᵃ [nYᵃ⁻]ⁿ
The presence of XₐYₙ(s) produce ax moles of aXⁿ⁺ and nx moles of Yᵃ⁻. <em>Where X is the solubility of the compound.</em>
Replacing in Ksp:
Ksp = [ax]ᵃ [nx]ⁿ
Solving for x, Solubility (S) is defined as:
![S = \sqrt[n+a]{\frac{Ksp}{a^{a} n^n} }](https://tex.z-dn.net/?f=S%20%3D%20%5Csqrt%5Bn%2Ba%5D%7B%5Cfrac%7BKsp%7D%7Ba%5E%7Ba%7D%20n%5En%7D%20%7D)
For AgCl, Ag₂CrO₄, AgBr and AgI solubilities are:
= 1.34x10⁻⁵M
= 6.50x10⁻⁵M
= 7.35x10⁻⁷M
= 9.22x10⁻⁹M
The lower solubility is the first compound in precipitate, thus, order of precipitation is:
<em>AgI, AgBr, AgCl and Ag₂CrO₄</em>
I believe your answer is the second option.
Answer: (B) The reverse reaction will proceed to establish equilibrium.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
For the given equation:
Given : when
is added to the system
If the concentration of
that is the product is increased, so according to the Le-Chatlier's principle, the equilibrium will shift in the direction where decrease of concentration of
takes place. Therefore, the equilibrium will shift in the left or backward direction.
Thus the reaction will shift towards reactants to reestablish equilibrium and thus partial pressure of
and
decreases and the partial pressure of
increases.