Answer:
The inertial force of the body
Explanation:
Everybody that is moving in a curved path has an inertial force called centrifugal force.
The counterforce of the centrifugal force is called the centripetal force. It also acts on every rotating body.
This force is always directed towards the center of the origin of the curve.
The velocity of the object changes its direction and magnitude at any instant of time. But the speed and angular velocity of the object remains the same for uniform circular motion.
So, according to the Newtonian mechanics, it is the inertial force of the body responsible for the centripetal force.
The mass of a body if the acceleration the body used to move is given as 5 m/s-2 will be 3 kg.
<h3>What is force?</h3>
Force is defined as the push or pulls applied to the body. Sometimes it is used to change the shape, size, and direction of the body.
Force is defined as the product of mass and acceleration. Its unit is Newton.
Given data;
Force,F = 30 N
Mass,m = kg
Acceleration,a = 5 m/s²
The force is found as;
F=ma
30 N =m kg × 5 m/s²
m=3 kg
Hence the mass of a body will be 3 kg.
To learn more about the force refer to the link;
brainly.com/question/26115859#SPJ1
#SPJ1
"The" (and any subsequent words) was ignored because we limit queries to 32 words.
Answer:
Density of 127 I = 
Also, 
Explanation:
Given, the radius of a nucleus is given as
.
where,
- A is the mass number of the nucleus.
The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

For the nucleus 127 I,
Mass, M = 
Mass number, A = 127.
Therefore, the density of the 127 I nucleus is given by

On comparing with the density of the solid iodine,
