Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.
Yes because the protons are the same but the neutrons change
Answer:
Mechanical weathering
A. does not change rock composition
C. abrasion
F. ice wedging
Chemical weathering
B. oxidabon
D. changes rock composition
E. acid rain
Explanation:
According to the chemical equation, the reaction ratio between O2 and CO2 is 2:1, which mean for every 2 moles of O2 reacted there is 1 mole of CO2 formed.
Use the molar mass and mass of O2 to find out the moles of O2: moles of O2 = mass of O2/molar mass of O2 = 8.94g/32.00g/mol = 0.2794 mole. Therefore, the moles of CO2 that formed is 0.2794moles/2 = 0.1397 mole
Use the moles and molar mass CO2 to find out the mass of CO2:
Mass of CO2 = moles of CO2 * molar mass of CO2 = 0.1397 mole * .44.01g/mole = 6.15 g.
So the answer is B 6.15g.