<u>Answer:</u> The mass of iron (III) nitrate is 11.16 g/mol
<u>Explanation:</u>
To calculate the mass of solute, we use the equation used to calculate the molarity of solution:

We are given:
Molarity of solution = 0.3556 M
Molar mass of Iron (III) nitrate = 241.86 g/mol
Volume of solution = 129.8 mL
Putting values in above equation, we get:

Hence, the mass of iron (III) nitrate is 11.16 g/mol
The given
ketone when reacted with base gave
enolate, the enolate formed due to loss of
methylene proton next to carbonyl group. Enolate when treated with
methyle Bromide gave
alpha substituted product.
Strong absorption around 1713 cm⁻¹ in IR spectrum confirms the presence of
Carbonyl group.
The product along with
¹H-NMR values is given below,
We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
No they wouldn't. <span>You can't make an </span>ionic compound<span> with these elements.</span>
44g of CO2 can produce by the reaction of carbon with oxygen