A:- sn(s) => Sn +2(0.24 M) + 2e-
B:- Sn +2 (0.87 M) +2e- => Sn(s)
solution will become more concentrated and solution B become less concentrated
Sn(s)+ Sn +2(0.87 ) ----> Sn(s) + Sn +2(0.24)
E = Eo - 0.0592 / 2 * log [ (0.24 / 0.87 ) ]
E = 0.0 - 0.0592 / 2 * log ( 0.275)
( n=2 two electrons are transferred)
E = -0.0296 * ( - 0.560)
E = 0.0165 volts
Answer:
22.94 L.
Explanation:
We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and T are constant, and have two different values of V and P:
P₁V₁ = P₂V₂
P₁ = 367.0 mm Hg, V₁ = 49.0 L.
P₂ = 784.0 mm Hg, V₂ = ??? L.
∴ V₂ = P₁V₁/P₂ = (367.0 mm Hg)(49.0 L)/(784.0 mm Hg) = 22.94 L.
The RMS of O2 at 17 degrees is calculated as follows
RMs= ( 3RT/m)^1/2 where
R= ideal gas constant = 8.314
T= temperature= 17+273= 290 K
M= molar mass in KG = 32/1000= 0.032 Kg
Rms is therefore= sqrt (3x 8.314 x290/0.032 ) = sqrt( 226036.875
RMs=475.43
Non metals gain electrons from the metals to have an octet structure.