Answer:
Some examples of things that stick together include clothes after they were in the dryer because a charge builds up on the objects, causing them to attract to each other. Things that don't stick together may include two neutral objects, like two pieces of neutral paper. ... If they repel, then they are the same charge.
Explanation:
Answer:
This is because we are surrounded by positive ions from electromagnetic fields generated by computers, cell phones, and other electronic devices which can impair brain function and suppress the immune system causing symptoms such as: anxiety, breathing difficulty, fatigue, headaches, irritability, lack of energy, poor concentration, nausea, and vertigo,
Explanation:
Car X traveled 3d distance in t time. Car Y traveled 2d distance in t time. Therefore, the speed of car X, is 3d/t, the speed of car Y, is 2d/t. Since speed is the distance taken in a given time.
In figure-2, they are at the same place, we are asked to find car Y's position when car X is at line-A. We can calculate the time car X needs to travel to there. Let's say that car X reaches line-A in t' time.

Okay, it takes t time for car X to reach line-A. Let's see how far does car Y goes.

We found that car Y travels 2d distance. So, when car X reaches line-A, car Y is just a d distance behind car X.
Answer:
Explanation:
General equation of the electromagnetic wave:
![E(x, t)= E_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ]](https://tex.z-dn.net/?f=E%28x%2C%20t%29%3D%20E_0sin%5B%5Cfrac%7B2%5Cpi%7D%7B%5Clambda%7D%28x-ct%29%2B%5Cphi%20%5D)
where
Phase angle, 0
c = speed of the electromagnetic wave, 3 × 10⁸
wavelength of electromagnetic wave, 698 × 10⁻⁹m
E₀ = 3.5V/m
Electric field equation
![E(x, t)= 3.5sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6x-2.7\times 10^{15}t)]](https://tex.z-dn.net/?f=E%28x%2C%20t%29%3D%203.5sin%5B%5Cfrac%7B2%5Cpi%7D%7B6.98%5Ctimes10%5E%7B-7%7D%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CE%28x%2C%20t%29%3D%203.5sin%5B%7B9%20%5Ctimes%2010%5E6%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CE%28x%2C%20t%29%3D%203.5sin%5B%7B9%20%5Ctimes%2010%5E6x-2.7%5Ctimes%2010%5E%7B15%7Dt%29%5D)
Magnetic field Equation
![B(x, t)= B_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ]](https://tex.z-dn.net/?f=B%28x%2C%20t%29%3D%20B_0sin%5B%5Cfrac%7B2%5Cpi%7D%7B%5Clambda%7D%28x-ct%29%2B%5Cphi%20%5D)
Where B₀= E₀/c

![B(x, t)= 1.2\times10^{-8}sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6x-2.7\times 10^{15}t)]](https://tex.z-dn.net/?f=B%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%5Cfrac%7B2%5Cpi%7D%7B6.98%5Ctimes10%5E%7B-7%7D%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CB%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%7B9%20%5Ctimes%2010%5E6%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CB%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%7B9%20%5Ctimes%2010%5E6x-2.7%5Ctimes%2010%5E%7B15%7Dt%29%5D)
Answer:
The kinetic energy K of a moving object is: K= 1/2mv to the second power
where m is the mass and v the velocity of the object.
Using this formula, we can calculate v for this problem
Explanation: