Answer:
A. 
B. P ≈ 0
Explanation:
In order to calculate the magnetic field strength we have to use the magnetic field strength of a straight wire.
(eq. I)
B = magnetic field strength at distance d
I = current (A)
mi = represented by the greek letter μ, represents the permeability of the free space, which is: 4 × π 10^(-7) T m/A
d = distance from the wire
By replacing the values in eq I, we have the following:
(eq II)
The earth magnetic field in the surface variates from 25 to 65 microteslas. Thus:
P = Percentage from the wires/percentage of the earth
∵
∴
P ≈ 0
Answer: 3kg: 14.7 6kg: 29.4 9kg: 44.1
Explanation: just did it on Edge
Due to my computer i can not see the pic so can u explain your question please
Answer:
8 Hz, 48 Hz
Explanation:
The standing waves on a string (or inside a pipe, for instance) have different modes of vibrations, depending on how many segments of the string are vibrating.
The fundamental frequency of a standing wave is the frequency of the fundamental mode of vibration; then, the higher modes of vibration are called harmonics. The frequency of the n-th harmonic is given by

where
is the fundamental frequency
In this problem, we know that the wave's third harmonic has a frequency of

This means this is the frequency for n = 3. Therefore, we can find the fundamental frequency as:

Now we can also find the frequency of the 6-th harmonic using n = 6:

Answer:
17640
Explanation:
Power = workdone/time
Power = (force x displacement)/time
Power = (mg x 60)/60
Power = (1800 x 9.8 x 60)/60
=> power = 17640 watt