The balanced chemical reaction is given above however I believe the coefficients are wrong. It should be:
4K + O2 = 2K2O
We use data from that reaction to obtain relationships between substances. We are given the amount of potassium that reacts. We proceed as follows:
1.52 mol K ( 2 mol K2O / 4 mol K ) = 0.76 mol of K2O is formed
First find the mass of <span>solute:
Molar mass KNO</span>₃ = <span>101.1032 g/mol
mass = Molarity * molar mass * volume
mass = 0.800 * 101.1032 * 2.5
mass = 202.2064 g of KNO</span>₃
<span>To prepare 2.5 L (0800 M) of KNO3 solution, must weigh 202.2064 g of salt, dissolve in a Beker, transfer with the help of a funnel of transfer to a volumetric flask, complete with water up to the mark, capping the balloon and finally shake the solution to mix.</span>
hope this helps!
Answer:
<u>Heating water with an open flame</u>
<u>Explanation:</u>
Remember, we are told in the label that Acetone is a "flammable liquid and vapor." <em>Being flammable means the substance can easily be set on fire</em>, and we would expect an open flame from heating water to trigger an explosion (a disaster) in which the Acetone is set on fire causing life-threatening dangers to the second group of students.
Moles KClO₃ = 0.239
<h3>Further explanation</h3>
Given
Reaction
2KClO₃(s) ⇒2KCl(s) + 3O₂(g)
P water = 23.8 mmHg
P tot = 758 mmHg
V = 9.07 L
T = 25 + 273 = 298 K
Required
moles of KClO₃
Solution
P tot = P O₂ + P water
P O₂ = P tot - P water
P O₂ = 758 - 23.8
P O₂ = 734.2 mmHg = 0.966 atm
moles O₂ :
n = PV/RT
n = 0.966 x 9.07 / 0.082 x 298
n = 0.358
From equation, mol ratio KClO₃ : O₂ = 2 : 3, so mol KClO₃ :
= 2/3 x mol O₂
= 2/3 x 0.358
= 0.239
Answer:
Conociendo el volumen de solución, masa de soluto y su masa molar, es posible determinar: B) Concentración molar
La molaridad es la relación entre el número de moles de soluto y los litros de solución. Más:
M = No moles de solución de soluto / volumen (L)
Y a su vez los moles de soluto se encuentran por:
No moles de soluto = masa soluto / masa molar soluto