The action potential spreads through an axon by depolarizing adjacent membrane to threshold.
- K+ departs the cell after Na+, which enters the cell first. Ions can move freely across the axon membrane because of the difference during the action potential.
- Because sodium contains a positive charge, the neuron becomes more positive and depolarized. Potassium channels take longer to open. As soon as the cell does open, K+ rushes out, reversing the depolarization known as repolarization.
- Sodium channels close during the peak of the action potential when potassium leaves the cell. When potassium ions are effluxed, the membrane potential is lowered or the cell becomes hyperpolarized.
- Outside of the cell, the concentration of Na+ is greater than inside the cell. while the concentration of K+ is is greater inside the cell than outside.
learn more about action potential here: brainly.com/question/6705448
#SPJ4
In physics, it’s called energy-transfer
Answer:
a. Acetyl CoA carboxylase
Explanation:
Much of the fatty acids used by the body is supplied by the diet, excessive amounts of carbohydrates and protein obtained from the diet can be converted to fatty acids and stored as triglycerides. Fatty acid synthesis occurs mainly in the liver and mammary glands, and to a lesser extent in adipose tissue and kidney, the process incorporates acetyl CoA carbons into the forming fatty acid chain using ATP and NADPH.
The acetyl portion of acetyl CoA is transported to cytosol as citrate, produced by condensation of oxaloacetate and acetyl CoA, the first reaction of the citric acid cycle, this occurs when the concentration of mitochondrial citrate is high, observed when there is a high concentration of ATP and isocitrate dehydrogenase is inhibited. The increase of citrate and ATP favors the synthesis of fatty acids, since this pathway needs both. Acetyl CoA should be converted to malonyl CoA. Carboxylation is catalyzed by acetyl CoA carboxylase and requires ATP, this reaction is the regulated step in fatty acid synthesis: it is inactivated by products, malonyl CoA and palmitoyl CoA, and activated by citrate, another regulatory mechanism is reversible phosphorylation of enzyme, which makes it inactive due to the presence of adrenaline / glucagon