Answer:
50,849.25 Joules
Explanation:
The amount of heat, Q, required to raise the temperature of a body with mass, m, and specific heat capacity, c is given by:
Q = mcΔT, where ΔT represents the change in temperature.
In the case of the iron block:
m = 75 g
c = 0.449 J/g °C
ΔT = 1535 - 25 = 1510 °C
Therefore,
Q = 75 g x 0.449 J/g °C x 1510 °C
= 50,849.25 Joules
<em>Hence, </em><em>50,849.25 Joules </em><em> of heat must be added to a 75.0-g iron block with a specific heat of 0.449 J/g °C to increase its temperature from 25 °C to its melting temperature of 1535 °C</em>
the big number describes the number ratio in a chemical equation
so for example,
2H2 + O2 --> 2H2O means
2 moles of hydrogen reacts with one mole of oxygen to form 2 moles of water
and as you know, the small (subscript) number determines the number of atoms of that element in one molecule of a compound
so I believe that drawing a normal lewis structure ( O=O ) should be correct
An electron because that is the only part able to be lost or gained without nuclear action needed