Answer:
true
Explanation:
Series resistors are additive
r1 + r2 + r3 = r total the total will always be greater than any one of the parts
Answer:
Question 1: the plates are moving toward one another.
Question 2: The Himalayan Mountains in India
Question 3: Because mountains are formed instead.
Explanation:
The paragraph explains that the plates continue to move closer to one another while forming multiple mountains.
The paragraph explains, " a well-known example of this is the formation of the Himalayan Mountains in India,"
The area of the Himalayan Mountains are better suited for the formation of mountains rather than volcanoes.
Have a nice day!! Good Luck!! Brainliest would be appreciated!!!
The correct answer is
<span>B. if Earth rotated on an axis that was not tilted with respect to Earth's orbit
In fact, the fact that Earth's axis is tilted is the reason why the durations of day and night are different in every part of the Earth. If the axis was not tilted, we would have exactly 12 hours of day and night in every point of the Earth, for the whole year.</span>
Answer:
a) 0 J
b) W = nRTln(Vf/Vi)
c) ΔQ = nRTln(Vf/Vi)
d) ΔQ = W
Explanation:
a) To find the change in the internal energy you use the 1st law of thermodynamics:
Q: heat transfer
W: work done by the gas
The gas is compressed isothermally, then, there is no change in the internal energy and you have
ΔU = 0 J
b) The work is done by the gas, not over the gas.
The work is given by the following formula:
n: moles
R: ideal gas constant
T: constant temperature
Vf: final volume
Vi: initial volume
Vf < Vi, then W < 0 and the work is done on the gas
c) The gas has been compressed. Thus, its temperature increases and heat has been transferred to the gas.
The amount of heat is equal to the work done W
d)
Answer:
θ₀ = 84.78° (OR) 5.22°
Explanation:
This situation can be treated as projectile motion. The parameters of this projectile motion are:
R = Range of Projectile = 150 m
V₀ = Launch Speed of Projectile = 90 m/s
g = 9.8 m/s²
θ₀ = Launch angle (OR) Angle of Elevation = ?
The formula for range of a projectile is given as:
R = V₀² Sin 2θ₀/g
Sin 2θ₀ = Rg/V₀²
Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²
2θ₀ = Sin⁻¹ (0.18)
θ₀ = 10.45°/2
<u>θ₀ = 5.22°</u>
Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:
θ₀ = 90° - 5.22°
<u>θ₀ = 84.78°</u>