I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
Explanation:
Acceleration is defined as the change in velocity over time.
When there is an increment or increase in the magnitude of velocity of a moving body then it is known as positive acceleration.
Whereas when there is a decrease in magnitude of velocity of a moving body then it is known as negative acceleration.
Thus, we can conclude that positive acceleration occurs when an object speeds up.
Explanation:
Hey there!
Here,
Pascal is a unit of pressure.

Now, As per the formula the units are:
kg, m and s^2.
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Taking into account the definition of molarity, the concentration of a solution that contains 70 g of H₂SO₄ in 0,28 dm³ of solution is 2.5510
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>This case</h3>
In this case, you have:
- number of moles= 70 g×
= 0.7143 moles, where 98 g/mole os the molar mass of H₂SO₄ - volume= 0.28 dm³= 0.28 L (being 1 dm³= 1 L)
Replacing in the definition of molarity:

Solving:
<u><em>Molarity= 2.5510 </em></u>
Finally, the concentration of a solution that contains 70 g of H₂SO₄ in 0,28 dm³ of solution is 2.5510
.
Learn more about molarity:
brainly.com/question/9324116
brainly.com/question/10608366
brainly.com/question/7429224
#SPJ1
It's not possible to answer the question exactly the way it's written.
That's because we don't know anything about the direction they
drive at any time during the trip.
You see, "velocity" is not just a word that you use for 'speed' when
you want to sound smart and technical, like this question is doing.
"Velocity" is a quantity that's made up of speed AND THE DIRECTION
of the motion. If you don't know the direction of the motion, then you
CAN'T tell the velocity, only the speed.
Here are the average speeds that Lori's family drove on each leg
of their trip:
Speed = (distance covered) / (time to cover the distance) .
Leg-A:
Speed = 15km/10min = 1.5 km/min
Leg-B:
Speed = 20km/15min = (1 and 1/3) km/min
Leg-C
Speed = 24km/12min = 2 km/min
Leg-D:
Speed = 36km/9min = 4 km/min
Leg-E:
Speed = 14km/14min = 1 km/min
From lowest speed to highest speed, they line up like this:
[Leg-E] ==> [Leg-B] ==> [Leg-A] ==> [Leg-C] ==> [Leg-D]
1.0 . . . . . . . . 1.3 . . . . . . . 1.5 . . . . . . . 2.0 . . . . . . . 4.0 . . . . km/minute
Whoever drove Leg-D should have been roundly chastised
and then abandoned by the rest of the family. 36 km in 9 minutes
(4 km per minute) is just about 149 miles per hour !