Diverging lens=concave lens
The image would be after the first focal point but before the lens and it will be smaller than the object. Look at my picture for reference. Please let me know if this helped you!
The concepts necessary to solve this problem are framed in the expression of string vibration frequency as well as the expression of the number of beats per second conditioned at two frequencies.
Mathematically, the frequency of the vibration of a string can be expressed as

Where,
L = Vibrating length string
T = Tension in the string
Linear mass density
At the same time we have the expression for the number of beats described as

Where
= First frequency
= Second frequency
From the previously given data we can directly observe that the frequency is directly proportional to the root of the mechanical Tension:

If we analyze carefully we can realize that when there is an increase in the frequency ratio on the tight string it increases. Therefore, the beats will be constituted under two waves; one from the first string and the second as a residue of the tight wave, as well


Replacing
for n and 202Hz for 



The frequency of the tightened is 205Hz
Answer:
B is the answer a force is a push or pull
Answer:
a) The mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle is 23.6 cm².
Explanation:
a) The mass flow rate through the nozzle can be calculated with the following equation:

Where:
: is the initial velocity = 20 m/s
: is the inlet area of the nozzle = 60 cm²
: is the density of entrance = 2.21 kg/m³
Hence, the mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle can be found with the Continuity equation:



Therefore, the exit area of the nozzle is 23.6 cm².
I hope it helps you!