1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fenix001 [56]
2 years ago
15

Find the mass of a football player who has 1200 N of force and has an acceleration of 1.5 m/s2 ?

Physics
1 answer:
jok3333 [9.3K]2 years ago
4 0

Answer:

800 kg is your answer.

Explanation:

Solution,\\\\Force(F)=1200N\\\\Acceleration(a)=1.5m/s^{2} \\\\As,\\\\F=ma\\\\1200=m*1.5\\\\m=\frac{1200}{1.5} \\\\m=800kg

You might be interested in
I need to choose a theme for my physics assignment My experiment is finding g
Kobotan [32]
<h3>Question:</h3>

How to find g (acceleration due to gravity)

<h3>Solution:</h3>

We know,

Acceleration due to gravity (g)

=  \frac{GM}{ {R}^{2} }

where, G = Gravitational constant

= 6.67 \times  {10}^{11} N {m}^{2}/k {g}^{2}  \\

M = Mass of the earth

= 6 \times  {10}^{24} \:  kg

R = Radius of the earth

= 6.4 \times  {10}^{6} m

Putting these values of G, M and R in the above formula, we get

g \:  =  \:  \frac{6.67 \times  {10}^{11} N {m}^{2}/k {g}^{2}   \times \: 6 \times  {10}^{24} \:  kg }{(6.4 \times  {10}^{6}m {)}^{2}  }  \\  = 9.8m/ {s}^{2}

So, the value of acceleration due to gravity is

9.8m/s ^{2}

Hope it helps.

Do comment if you have any query.

5 0
2 years ago
The psychologist known for latent learning and cognitive maps is _________. A. Robert Rescorla B. Edward Tolman C. William James
Lubov Fominskaja [6]

Answer:

B

Explanation:

B. Edward Tolman

4 0
3 years ago
Read 2 more answers
You need to design a photodetector that can respond to the entire range of visible light. True or False
Rasek [7]

Answer: True

Explanation:

A photo detector that can respond to the entire rang of visible light can be design, it is true.

Photo detector is a device in an optical receiver which receives optical signals and convert it to electric signal. It is the key device position in front of the optical receiver.

7 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
2 years ago
Read 2 more answers
Please help!! This is a final and I need a good grade
Ket [755]
Diagram 4 is the correct answer.


6 0
3 years ago
Other questions:
  • Select the true statements: check all that apply check all that apply oxidizing agents can convert co into co2. a reducing agent
    15·1 answer
  • A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0° below the horizontal. It is held in position by a fri
    6·1 answer
  • While moving in, a new homeowner is pushing a box across the floor at a constant velocity. The coefficient of kinetic friction b
    10·1 answer
  • A man at a carnival lifts a hammer high over his head before swinging it down onto a pad
    5·1 answer
  • An ideal parallel - plate capacitor consists of two parallel plates of area A separated by a distance d. This capacitor is conne
    15·1 answer
  • Why is the crust less dense than the core
    14·1 answer
  • A golf ball is struck with a velocity of 80 ft/s as shown. Determine the speed at which it strikes the ground at b and the time
    12·2 answers
  • PLS HELP MEEEE (NO LINKS PLEASE)
    5·2 answers
  • Water flows with constant speed through a garden hose that goes up to 27.5 cm high. if the water pressure is 132kpa at the botto
    9·1 answer
  • Please help!!! Will give u Brainliest
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!