Answer:
v = 15.8 m/s
Explanation:
Let's analyze the situation a little, we have a compressed spring so it has an elastic energy that will become part kinetic energy and a potential part for the man to get out of the barrel, in addition there is a friction force that they perform work against the movement. So the variation of mechanical energy is equal to the work of the fictional force
= ΔEm =
-Em₀
Let's write the mechanical energy at each point
Initial
Em₀ = Ke = ½ k x²
Final
= K + U = ½ m v² + mg y
Let's use Hooke's law to find compression
F = - k x
x = -F / k
x = 4400/1100
x = - 4 m
Let's write the energy equation
fr d = ½ m v² + mgy - ½ k x²
Let's clear the speed
v² = (fr d + ½ kx² - mg y) 2 / m
v² = (40 4.00 + ½ 1100 4² - 60.0 9.8 2.50) 2/60.0
v² = (160 + 8800 - 1470) / 30
v = √ (229.66)
v = 15.8 m/s
When Jane is sliding down a slide, she is demonstrating translational motion.
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.
Answer:
at the highest point of the path the acceleration of ball is same as acceleration due to gravity
Explanation:
At the highest point of the path of the ball the speed of the ball becomes zero as the acceleration due to gravity will decelerate the motion of ball due to which the speed of ball will keep on decreasing and finally it comes to rest
So here we will say that at the highest point of the path the speed of the ball comes to zero
now by the force diagram we can say that net force on the ball due to gravity is given by

now the acceleration of ball is given as


so at the highest point of the path the acceleration of ball is same as acceleration due to gravity
Answer:
The emission spectrum is always the same and can be used to identify the element and part of the Bohr model proposed that electrons in the hydrogen are located in particular orbits around the nucleos are True.
Explanation:
The Niels Bohr and quantic mecanic theorys are both based on the study of atomics spectrums. The atomic spectrum is a characteristic pattern of a light wavelenght emited wich is unique to each element.
<u>For example</u>, if we put some low pressure hydrogen in a glass tube and in the tp of the glass we apply a voltage big enough to produce a electric current in the hydrogen gas, the tube its going to emit light wich have a color dependig of the gas element in the interior. If we observe this light with a spectrometer we are going to see shining lines and each one of this lines have a wavelenght and diferent colors. This lines are called emission spectrum and the wavelength of that spectrum are unique to eache element.
<u>Summering up, </u>we can identify elements using the emission spectrum because any element produces the same spectrum than other element.
According to Niels Bhor theory the electron only can be in especific discret ratios to the nucleus. Where this electron moves himself in circukar orbits under the influence of the Coulomb attraction force.