1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elina [12.6K]
3 years ago
9

A student makes a simple pendulum by attaching a mass to the free end of a 1.50-meter length of string suspended from the ceilin

g of her physics classroom. She pulls the mass up to her chin and releases it from rest, allowing the pendulum to swing in its curved path. Her classmates are surprised that the mass doesn't reach her chin on the return swing, even though she does not move. Explain why the mass does not have enough energy to return to its starting position and hit the girl on the chin.
Physics
1 answer:
Fofino [41]3 years ago
5 0

Answer:

The mass has likely lost some of its mechanical energy to resistance on its path.

Explanation:

The mechanical energy of an object is the sum of its kinetic and potential energies (KE and PE.) Ideally, the mechanical energy of a simply pendulum should be "conserved." In other words, the sum of the kinetic and potential energy of the simply pendulum should stays the same as it travels along its path.

Indeed, as the pendulum travels, some of its PE will convert to KE and back. However, the sum of these two energies is supposed to stay the same.

  • When the pendulum moves from the highest point to the bottom of the path, some of its PE converts to KE. (The pendulum speeds up in this process.)
  • When the pendulum moves from the bottom of its path to the opposite side, its KE is converted back to PE. (The pendulum slows down as it moves towards the other side of the path.)

However, in practice, the mechanical energy of pendulums isn't always conserved. For example, various kinds of resistances (such as air resistance) act on the pendulum as it moves. That would slow down the pendulum. Some of the pendulum's energies would be converted to heat and is lost to the surroundings.

In effect, the mechanical energy of the pendulum would become smaller and smaller over time. When the pendulum travels back towards the girl, its potential energy would be smaller than the initial value when at the girl's chin.

You might be interested in
Learning Goal: To practice Problem-Solving Strategy 7.2 Problems Using Mechanical Energy II. The Great Sandini is a 60.0-kg circ
andreev551 [17]

Answer:

v = 15.8 m/s

Explanation:

Let's analyze the situation a little, we have a compressed spring so it has an elastic energy that will become part kinetic energy and a potential part for the man to get out of the barrel, in addition there is a friction force that they perform work against the movement.  So the variation of mechanical energy is equal to the work of the fictional force

    W_{fr} = ΔEm = Em_{f} -Em₀

Let's write the mechanical energy at each point

Initial

    Em₀ = Ke = ½ k x²

Final

   Em_{f} = K + U = ½ m v² + mg y

Let's use Hooke's law to find compression

    F = - k x

    x = -F / k

    x = 4400/1100

    x = - 4 m

Let's write the energy equation

    fr d = ½ m v² + mgy - ½ k x²

Let's clear the speed

   v² = (fr d + ½ kx² - mg y) 2 / m

   v² = (40 4.00 + ½ 1100 4² - 60.0 9.8 2.50)   2/60.0

   v² = (160 + 8800 - 1470) / 30

   v = √ (229.66)

   v = 15.8 m/s

5 0
3 years ago
Read 2 more answers
Jane is sliding down a slide. What kind of motion is she demonstrating?
Over [174]
When Jane is sliding down a slide, she is demonstrating translational motion. 
5 0
3 years ago
Help!!! I need it today <br> Thank you in advance
svlad2 [7]

Answer:

 F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.

Explanation:

The student wants to prove hooke's law which has the form

          F = - k (x-xo)

To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.

Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,

we must be careful when hanging the weights so as not to create oscillations in the spring

we look for the mass of each weight

         W = mg

          m = W / g

and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.

The fact of obtaining a line already proves Hooke's law.

5 0
2 years ago
A tennis ball is shot vertically upward in an evacuated chamber inside a tower with an initial speed of 20.0 m/s at time t=0s. W
dalvyx [7]

Answer:

at the highest point of the path the acceleration of ball is same as acceleration due to gravity

Explanation:

At the highest point of the path of the ball the speed of the ball becomes zero as the acceleration due to gravity will decelerate the motion of ball due to which the speed of ball will keep on decreasing and finally it comes to rest

So here we will say that at the highest point of the path the speed of the ball comes to zero

now by the force diagram we can say that net force on the ball due to gravity is given by

F_g = mg

now the acceleration of ball is given as

a = \frac{F_g}{m}

a = \frac{mg}{m} = g

so at the highest point of the path the acceleration of ball is same as acceleration due to gravity

5 0
2 years ago
Which of the following statements is/are true? Select all correct answers. An orbital is the probability distribution function d
crimeas [40]

Answer:

The emission spectrum is always the same and can be used to identify the element and part of the Bohr model proposed that electrons in the hydrogen are located in particular orbits around the nucleos are True.

Explanation:

The Niels Bohr and quantic mecanic theorys are both based on the study of atomics spectrums. The atomic spectrum is a characteristic pattern of a light wavelenght emited wich is unique to each element.

<u>For example</u>, if we put some low pressure hydrogen in a glass tube and in the tp of the glass we apply a voltage big enough to produce a electric current in the hydrogen gas, the tube its going to emit light wich have a color dependig of the gas element in the interior. If we observe this light with a spectrometer we are going to see shining lines and each one of this lines have a wavelenght and diferent colors. This lines are called emission spectrum and the wavelength of that spectrum are unique to eache element.

<u>Summering up, </u>we can identify elements using the emission spectrum because any element produces the same spectrum than other element.

 According to Niels Bhor theory  the electron only can be in especific discret ratios to the nucleus. Where this electron moves himself in circukar orbits under the influence of the Coulomb attraction force.

6 0
3 years ago
Other questions:
  • How much energy does it take to melt a 16.87 g ice cube? ΔHfus = 6.02 kJ/mol How much energy does it take to melt a 16.87 g ice
    9·1 answer
  • Please help me
    9·1 answer
  • Process of changing a liquid into a gas
    7·2 answers
  • Porque alguno satélites de telecomunicaciones puede permanecer en una orbita geoestacionaria
    14·1 answer
  • Density is calculated by dividing the mass of an object by its volume. Please select the best answer from the choices provided T
    13·1 answer
  • What is the velocity of the object at 20.0s
    10·1 answer
  • A piano tuner is tuning a piano when he discovers that the G above middle C is vibrating with a higher frequency than his G tuni
    5·1 answer
  • What is work please give ans​
    11·1 answer
  • The rate of change of velocity is called:.
    7·1 answer
  • If you jog for 1 hr and travel 10 km, the calculation of 10 km/hr describes your.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!