Answer:
In Milgram's experiment, compliance, or doing what the experimenter asked,
the teacher and the learner were in the same room. -C.
5.4*10^-19 C
Explanation:
For the purposes of this question, charges essentially come in packages that are the size of an electron (or proton since they have the same magnitude of charge). The charge on an electron is -1.6*10^-19
Therefore, any object should have a charge that is a multiple of the charge of an electron - It would not make sense to have a charge equivalent to 1.5 electrons since you can't exactly split the electron in half. So the charge of any integer number of electrons can be transferred to another object.
Charge = q(electron)*n(#electrons)
Since 5.4/1.6 = 3.375, we know that it can not be the right answer because the answer is not an integer.
If you divide every other option listed by the charge of an electron, you will get an integer number.
(16*10^-19 C)/(1.6*10^-19C) = 10
(-6.4*10^-19 C)/(1.6*10^-19C) = -4
(4.8*10^-19 C)/(1.6*10^-19C) = 3
(5.4*10^-19 C)/(1.6*10^-19C) = 3.375
(3.2*10^-19C)/(1.6*10^-19C) = 2
etc.
I hope this helps!
At a distance r from a charge e on a particle of mass m the electric field value is 8.9876 × 10⁹ N·m²/C². Divide the magnitude of the charge by the square of the distance of the charge from the point. Multiply the value from step 1 with Coulomb's constant.
<h3>what is magnitude ?</h3>
Magnitude can be defined as the maximum extent of size and the direction of an object.
It is used as a common factor in vector and scalar quantities, as we know scalar quantities are those quantities that have magnitude only and vector quantities are those quantities have both magnitude and direction.
There are different ways where magnitude is used Magnitude of earthquake, charge on an electron, force, displacement, Magnitude of gravitational force
For more details regarding magnitude, visit
brainly.com/question/28242822
#SPJ1
Answer:
The force when θ = 33° is 1.7625 times of the force when θ = 18°
Explanation:
The force on a moving charge through a magnetic field is given by
F = qvB sin θ
q = charge of the moving particle
v = Velocity of the moving charge
B = Magnetic field strength
θ = angle between the magnetic field and the velocity (direction of the motion) of the moving charge
Because qvB are all constant, we can call the expression K.
F = K sinθ
when θ = 18°,
F = K sin 18° = 0.309K
when θ = 33°, let the force be F₁
F₁ = K sin 33° = 0.5446K
(F₁/F) = (0.5446K/0.309K) = 1.7625
F₁ = 1.7625 F
Hope this Helps!!!
Answer:
Explanation:
liquids have definite volume
liquids do not have definite shape. The take the shape of the container in which they are kept.
gases do not have definite volume.
gases do not have definite shape. They take the shape of the container in which they are kept.
Hope this helps
plz mark as barinliest!!!!!!
Stay safe!