Given Information:
Initial speed of rock = vi = 30 m/s
escape speed of the asteroid = ve = 24 m/s
Required Information:
final speed of rock = vf = ?
Answer:
vf = 18 m/s
Explanation:
As we know from the conservation of energy
KEf + Uf = KEi + Ui
Where KE is the kinetic energy and U is the potential energy
0 + 0 = ½mve² - GMm/R
When escape speed is used, KEf is zero due to vf being zero. Uf is zero because the object is very far away from mass M, therefore, the equation becomes
GMm/R = ½mve²
m cancels out
GM/R = ½ve²
GM/R = ½(24)²
GM/R = 288
KEf + Uf = KEi + Ui
½mvi² + 0 = ½vf² - GMm/R
m cancels out
½vi² = ½vf² - GM/R
Substitute the values
½(30)² = ½vf² - (288)
½vf² = 450 - 288
vf² = 2(162)
vf = √324
vf = 18 m/s
Therefore, the final speed of the rock is 18 m/s
Answer:
The force on the charge at the origin is 0 N .
Explanation:
All charges are positive. So, in x axis force exerted by the charge located in the position (10 cm, 0 cm) will be canceled with the force exerted by the charge located in the position (-10 cm, 0 cm). In the same way, in y axis the force exerted by the charge located in the position (0 cm, 10 cm) will be canceled with the force exerted by the charge located in the position (0 cm, -10 cm).
the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
Because solo gold isn't strong material. But with admixture it's stronger.
Gravitational energy is the potential energy associated with gravitational force. If an object falls from one point to another inside a gravitational field, the force of gravity will do positive work on the object and the gravitational potential.
Found this on cha-cha.com