Answer:
NiCO3 (s) + 2H+ (aq) → H2O (l) + CO2 (g) + Ni2+ (aq)
Explanation:
To write the complete ionic equation:
1. Start with a balanced molecular equation.
2. Break all soluble strong electrolytes (compounds with (aq) beside them) into their ions
3. indicate the correct formula and charge of each ion
4. indicate the correct number of each ion
5. write (aq) after each ion
6. Bring down all compounds with (s), (l), or (g) unchanged.
We could use solar power, wind power, geothermal power, hydroelectric power, or nuclear power. There are probably more but this is what I can think of off the top of my head. I hope this helps. Let me know if anything is unclear.
pV = nRT
p = nRT/V
p= 1 x 0.08205 x 1000/ 2
p = 41.025 Pa
Edit: The unit should be atm instead of Pa, as pointed out by a nice human being.
Let's assume that the gas has ideal gas behavior.
Then we can use ideal gas equation,
PV = nRT
Where, P is Pressure of the gas (Pa), V is volume of the gas (m³), n is the number of moles of gas (mol), R is the Universal gas constant (8.314 J mol⁻¹ K⁻¹) and T is the temperature in Kelvin (K)
The given data for the gas is,
P = 2.8 atm = 283710 Pa
V = 98 L = 98 x 10⁻³ m³
T = 292 K
R = 8.314 J mol⁻¹ K⁻¹
n = ?
By applying the formula,
283710 Pa x 98 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 292 K
n = 11.45 mol
Hence,moles of gas is 11.45 mol.