Answer:
![5.31*10^{-10} = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=5.31%2A10%5E%7B-10%7D%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Explanation:
For a chemical reaction, equilibrium is a state at which the rate of the forward reaction equals that of the reverse reaction. The equilibrium constant Keq is a parameter characteristic of this state which is expressed as a ratio of the concentration of the products to that of the reactants.
For a hypothetical reaction:
xA + yB ⇄ zC
The equilibrium constant is :
![Keq = \frac{[A]^{x}[B]^{y}}{[C]^{z} }](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BA%5D%5E%7Bx%7D%5BB%5D%5E%7By%7D%7D%7B%5BC%5D%5E%7Bz%7D%20%7D)
The given reaction involves the decomposition of H2O into H2 and O2

The equilibrium constant is expressed as :
![Keq = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Since Keq = 5.31*10^-10
![5.31*10^{-10} = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=5.31%2A10%5E%7B-10%7D%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Answer:
The final balanced equation is :

Explanation:

Balancing in acidic medium:
First we will determine the oxidation and reduction reaction from the givne reaction :
Oxidation:

Balance the charge by adding 2 electrons on product side:
....[1]
Reduction :

Balance O by adding water on required side:

Now, balance H by adding
on the required side:

At last balance the charge by adding electrons on the side where positive charge is more:
..[2]
Adding [1] and [2]:

The final balanced equation is :

Answer:
The first ionization energy is the energy it takes to remove an electron from a neutral atom.
hope it is helpful :)
A system is a part of the <em>physical</em> universe defined <em>arbitrarily</em> for observation purposes.
Boundaries are a part of the <em>physical</em> universe that are around the system.
In a scientific sense, a system is a part of the <em>physical</em> universe whose boundaries, that is, the limit between the system and its surroundings, are defined <em>arbitrarily</em> for observation purposes.
A system contains at least a model, represented in a phenomenological way, and it can be isolated (no mass nor energy interactions), closed (no mass interactions) or open.
The surroundings are a part of the <em>physical</em> universe that are around the system.
An example is a coffee-maker, where coffee-maker the system and air represents the surroundings, the coffee-maker receives energy from a heat source to warm up itself and releases part of such energy to the air.
We kindly invite to check this question on systems and surroundings: brainly.com/question/6044762