Answer:7 cm/s
Explanation:
Given
Particle move along curve

As it reaches the (2,3) its y coordinate is increasing at 14 cm/s
Differentiating y w.r.t time
Now at (2,3)

The answer for the following problem is explained below.
Therefore the volume charge density of a substance (ρ) is 0.04 ×
C.
Explanation:
Given:
radius (r) =2.1 cm = 2.1 ×
m
height (h) =8.8 cm = 8.8 ×
m
total charge (q) =6.1×
C
To solve:
volume charge density (ρ)
We know;
<u> ρ =q ÷ v</u>
volume of cylinder = π ×r × r × h
volume of cylinder =3.14 × 2.1 × 2.1 ×
× 8.8 ×
volume of cylinder (v) = 122.23 ×
<u> ρ =q ÷ v</u>
ρ = 6.1×
÷ 122.23 ×
<u>ρ = 0.04 × </u>
<u> C</u>
Therefore the volume charge density of a substance (ρ) is 0.04 ×
C.
Given required solution
M=10kg W=? W=Fd
v=5.0m/s F=mg
t=2.40s =10*10=100N
S=VT
=5m/s*2.4s
=12m
so W=12*100
W=1200J
Answer:
Explanation:
Impulse of reaction force of floor = change in momentum
Velocity of impact = √ 2gh₁
= √ 2 x 9.8 x 1.5 = 5.4 m /s.
velocity of rebound = √2gh₂
= √ 2x 9.8 x 1
= 4.427 m / s.
Initial momentum = .050 x 5.4 = .27 kg m/s
Final momentum = .05 x 4.427 = .22 kg.m/s
change in momentum = .27 - .22 = .05 kg m/s
Impulse = .05 kg m /s
Impulse = force x time
force = impulse / time
.05 / .015 = 3.33 N.
kinetic energy = 1/2 m v²
Initial kinetic energy = 1/2 x .05 x 5.4²
= 0.729 J
Final Kinetic Energy =1/2 x .05 x 4.427²
= 0.489 J
Change in Kinetic energy =0 .24 J
Lost kinetic energy is due to conversion of energy into sound light etc.