Answer:
The normal line divides the angle between the incident ray and the reflected ray into two equal angles. The angle between the incident ray and the normal is known as the angle of incidence. The angle between the reflected ray and the normal is known as the angle of reflection.
Answer:
Explanation:
a )
While breaking initial velocity u = 62.5 mph
= 62.5 x 1760 x 3 / (60 x 60 ) ft /s
= 91.66 ft / s
distance trvelled s = 150 ft
v² = u² - 2as
0 = 91.66² - 2 a x 150
a = - 28 ft / s²
b ) While accelerating initial velocity u = 0
distance travelled s = .24 mi
time = 19.3 s
s = ut + 1/2 at²
s is distance travelled in time t with acceleration a ,
.24 = 0 + 1/2 a x 19.3²
a = .001288 mi/s²
= 2.06 m /s²
c )
If distance travelled s = .25 mi
final velocity v = ? a = .001288 mi / s²
v² = u² + 2as
= 0 + 2 x .001288 x .25
= .000644
v = .025 mi / s
= .0025 x 60 x 60 mi / h
= 91.35 mph .
d ) initial velocity u = 59 mph
= 86.53 ft / s
final velocity = 0
acceleration = - 28 ft /s²
v = u - at
0 = 86.53 - 28 t
t = 3 sec approx .
Answer:

Explanation:
Let the sphere is uniformly charge to radius "r" and due to this charged sphere the electric potential on its surface is given as

now we can say that


now electric potential is given as


now work done to bring a small charge from infinite to the surface of this sphere is given as


here we know that

now the total energy of the sphere is given as



