Answer:


Explanation:
m = Mass of each the cars = 
= Initial velocity of first car = 3.46 m/s
= Initial velocity of the other two cars = 1.4 m/s
v = Velocity of combined mass
As the momentum is conserved in the system we have

Speed of the three coupled cars after the collision is
.
As energy in the system is conserved we have

The kinetic energy lost during the collision is
.
Answer:
118.3 J
Explanation:
Givens:
m = 1.4 kg
V = 13 m/s
Formula for kinetic energy:
KE = (1/2)*(m)*(v)^2
KE = .5*(1.4 kg)*(13 m/s)^2
KE 118.3 J
J = Joules
Answer: 1.5×10^10 N/C
Explanation:
E= F/q
Where E= magnitude of the electric field
F= force of attraction
q= charge of the given body
Given F= 6.5×10^-8 N
q= 4.3× 10^-18 C
Therefore, E = 6.5×10 ^-8/ 4.3×10^-18
E = 1.5×10^10 N/C
The Earth gets hotter as one travels towards the core, known as the geothermal gradient. The geothermal gradient is the amount that the Earth's temperature increases with depth. ... On average, the temperature increases by about 25°C for every kilometer of depth.
Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm