Explanation:
cellulose and pectin are present on the cells of collenchyma...
It would swim 30*15 metres, which is 450 metres.
Answer: The small spherical planet called "Glob" has a mass of 7.88×1018 kg and a radius of 6.32×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.44×103 m, above the surface of the planet, before it falls back down.
1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.
2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.
Explanation: To find the answer, we need to know about the different equations of planetary motion.
<h3>How to find the initial speed of the rock as it left the astronaut's hand?</h3>
- We have the expression for the initial velocity as,

- Thus, to find v, we have to find the acceleration due to gravity of glob. For this, we have,

- Now, the velocity will become,

<h3>How to find the speed of the satellite?</h3>
- As we know that, by equating both centripetal force and the gravitational force, we get the equation of speed of a satellite as,

Thus, we can conclude that,
1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.
2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.
Learn more about the equations of planetary motion here:
brainly.com/question/28108487
#SPJ4
Answer:
sum of the two forces as both point to the right is a force that points to the right,
Explanation:
The force on the cast load at point Y is given by
F = q_y E
force is a vector magnitude so its result is
∑ F = Fₐ + F_b
indicate that the charge at y is negative, we analyze the direction of the force created by each charge
Charge A
as the electric field is incoming the charge is negative and as the test charge is negative both repel each other, consequently the force points to the right
Charge B
in this case the electric field lines are salient, therefore the charge is positive, consequently the force on the charge at y is attractive and points to the right
the sum of the two forces as both point to the right is a force that points to the right, that is, in the direction of the charge located at B
1 liter = 1000 cm^3
20cm * 20cm * 20cm = 8000 cm^3
8000/1000 = 8 liters
Since 1ml of water = 1 cm^3 = 1 grams
8 liters = 8000 grams = 8 kilograms