Answer:

Step-by-step explanation:
Represent the diagonals as:




Required
Determine the coordinate of the intersection
To do this, we simply calculate the midpoint of AC or BD.
For AC:


The midpoint is:

This gives:




For BD:


The midpoint is:

This gives:




Notice the midpoints are the same:

<em>Hence, the coordinates of the intersection is (2,1)</em>
Answer:
x = 1/4
y = 5 2/4
Step-by-step explanation:
Given two equations
1. 10x + 3y = 19
2. y = 2x + 5
Substitute 2x + 5 for y in the first equation
We have
10x + 3y = 19
10x + 3(2x + 5) = 19
Expand the bracket
10x + 3 X 2x + 3 X 5 = 19
10x + 6x + 15 = 19
16x + 15 = 19
Subtract 15 from both sides to eliminate 15 on the left
16x + 15 - 15 = 19 - 15
16x = 4
Divide both sides by 16 to isolate x
16x/16 = 4/16
x = 1/4
Now, substitute 1/4 for x in either equation to get y.
Using equation 2 , we have
y = 2x + 5
= 2(1/4) + 5
= 2/4 + 5
LCM of the denominator is 4.
Divide the LCM by the denominators and multiply the results by the numerators. Also, the LCM becomes the denominator of the results
Therefore
= 2 + 20/4
= 22/4
y= 5 2/4
x = 1/4 , y = 5 2/4
Answer:
$33
Step-by-step explanation:
Let the amount of money Corey has be $x.
Amount of money Bryce have= $(x +16)
Total amount= $50
$x +$(x +16)= $50
2x +16= 50
2x= 50 -16
2x= 34
Divide both sides by 2:
x= 34 ÷2
x= 17
Amount of money Bryce have
= $(17 +16)
= $33
hmmm first off let's convert the √3 +i to trigonometric form, and then use De Moivre's root theorem, bearing in mind that √3 and i or 1i are both positive, meaning we're on the I Quadrant.
![\bf (\stackrel{a}{\sqrt{3}}~,~\stackrel{b}{1i})\qquad \begin{cases} r=&\sqrt{(\sqrt{3})^2+1^2}\\ &\sqrt{3+1}\\ &2\\ \theta =&tan^{-1}\left( \frac{1}{\sqrt{3}}\right)\\\\ &tan^{-1}\left( \frac{\sqrt{3}}{3} \right)\\ &\frac{\pi }{6} \end{cases}~\hfill \implies ~\hfill 2\left[ cos\left( \frac{\pi }{6}\right) +i~sin\left( \frac{\pi }{6}\right) \right]](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Ba%7D%7B%5Csqrt%7B3%7D%7D~%2C~%5Cstackrel%7Bb%7D%7B1i%7D%29%5Cqquad%20%5Cbegin%7Bcases%7D%20r%3D%26%5Csqrt%7B%28%5Csqrt%7B3%7D%29%5E2%2B1%5E2%7D%5C%5C%20%26%5Csqrt%7B3%2B1%7D%5C%5C%20%262%5C%5C%20%5Ctheta%20%3D%26tan%5E%7B-1%7D%5Cleft%28%20%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D%5Cright%29%5C%5C%5C%5C%20%26tan%5E%7B-1%7D%5Cleft%28%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%5Cright%29%5C%5C%20%26%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%5Cend%7Bcases%7D~%5Chfill%20%5Cimplies%20~%5Chfill%202%5Cleft%5B%20cos%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%2Bi~sin%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%5Cright%5D)
![\bf ~\dotfill\\\\ \qquad \textit{power of two complex numbers} \\\\\ [\quad r[cos(\theta)+isin(\theta)]\quad ]^n\implies r^n[cos(n\cdot \theta)+isin(n\cdot \theta)] \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~%5Cdotfill%5C%5C%5C%5C%20%5Cqquad%20%5Ctextit%7Bpower%20of%20two%20complex%20numbers%7D%20%5C%5C%5C%5C%5C%20%5B%5Cquad%20r%5Bcos%28%5Ctheta%29%2Bisin%28%5Ctheta%29%5D%5Cquad%20%5D%5En%5Cimplies%20r%5En%5Bcos%28n%5Ccdot%20%5Ctheta%29%2Bisin%28n%5Ccdot%20%5Ctheta%29%5D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \left[ 2\left[ cos\left( \frac{\pi }{6}\right) +i~sin\left( \frac{\pi }{6}\right) \right] \right]^3\implies 2^3\left[ cos\left( 3\cdot \frac{\pi }{6}\right) +i~sin\left( 3\cdot \frac{\pi }{6}\right) \right] \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill 8\left[cos\left( \frac{\pi }{2} \right) +i~sin\left( \frac{\pi }{2} \right) \right]~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%202%5Cleft%5B%20cos%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%2Bi~sin%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%5Cright%5D%20%5Cright%5D%5E3%5Cimplies%202%5E3%5Cleft%5B%20cos%5Cleft%28%203%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%2Bi~sin%5Cleft%28%203%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%208%5Cleft%5Bcos%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%5Cright%29%20%2Bi~sin%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%5Cright%29%20%5Cright%5D~%5Chfill)
Answer:
-19
Step-by-step explanation:
It's every 3 numbers because -7 would be between -10 & -4