Characteristics help us to classify seeds because different plants have different features.
<h3>How are characteristics used to identify and classify plants?</h3>
The divisions classify plants that are based on whether they reproduce by spores or seeds. Spore-bearing plants include ferns, club mosses, and horsetail while on the other hand, Seed-bearing plants are divided into gymnosperms and angiosperms. Different plants have different characteristics and features so on the basis of these characteristics we can easily classify seeds whether they belong from angiosperm and gymnosperm.
So we can conclude that characteristics help us to classify seeds because different plants have different features.
Learn more about seeds here: brainly.com/question/18799172
#SPJ1
Answer:
0.146 m/s
Explanation:
We can see it in the pic.
When you ask for "joules per second", you're asking for "watts".
The rate of energy "transfer" is 'power'. In this case, the light bulb
transfers energy out of the electrical circuit and into the space
around it, in the form of light and heat radiation.
Electrical power = (voltage) x (current) =
(6 volts) x (0.5 ampere) =
3 watts = 3 joules per second.
Answer: KE = 62.5J
Explanation:
Given that
Mass of object = 5kg
kinetic energy KE = ?
velocity of object = 5m/s
Since kinetic energy is the energy possessed by a moving object, and it depends on the mass (m) of the object and the velocity (v) by which it moves. Therefore, the object has kinetic energy.
i.e K.E = 1/2mv^2
KE = 1/2 x 5kg x (5m/s)^2
KE = 0.5 x 5 x 25
KE = 62.5J
Thus, the object has 62.5 joules of kinetic energy.
Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>