Answer:
54 Kobo
Explanation:
Units of <u>electricity</u> are measured in kilowatt hours (kWh).
Given information:
- 900 watt electric iron
- Appliance usage = 4 hours a week for 5 weeks
- Unit cost of electricity = 3 Kobo per kWh
<h3><u>Step 1</u></h3>
Convert the wattage of the electric iron from watts to kilowatts.
1000 watts (W) = 1 kilowatt (kW)
⇒ 900 watts = 1 ÷ 1000 = 0.9 kilowatts
This means that the power consumption of the electric iron is 0.9 kW per hour of use.
<h3><u>Step 2</u></h3>
Total hours spent pressing clothes:
= 4 hours per week for 5 weeks
= 4 × 5
= 20 hours
<u>Total power consumption</u>:
= number of kW × number of hours
= 0.9 × 20
= 18 kWh
<h3><u>Step 3</u></h3>
To find the <u>total cost</u>, multiply the total kWh by the cost per kWh:
⇒ Cost = 18 × 3 = 54 Kobo
Answer:
C. 30.6m
Explanation:
To find the height of the tower, we are to use Newtons law of motion to solve this problem. Since the penny is falling from the top of the tower, it is acted by the acceleration due to gravity. The formula to be used is:

Where H is the height of the tower, t is the time taken to hit the ground, u is the initial velocity and g is the acceleration due to gravity.
Given that, t = 2.5 s, g =9.8 m/s², u = 0 m/s (at the top of tower)

The question is incomplete.
The distance between the Moon and Earth influences: 1) the attractive gravitational force between them, 2) the tides, 3) the eclipses, 4) the period of each full turn of the moon around the Earth.
Assuming the question refers to the gravitational attraction, we must use the fact that, as per, Newton's Universal Gravitaional Law, the attractive force between the two bodies is inversely related to the square distance that separates them.
Then, if the Moon were twice as far, the gravitational pull would be one fourth (1/4) of actual pull.
An electron that is far away from the nucleus have higher energy than an electron near the nucleus. Nucleus are positively charged and those electrons near it get attracted; those electrons gain kinetic energy hence reducing their internal energy. The electrons far from nucleus have low kinetic energy hence more internal energy.