The angular acceleration of the blade when it's switched off is (-6800 rev/min) divided by (2.8 sec) = -2,428.6 rev/(min-sec) = -40.5 rev/sec^2 .
v
Convert the given temperatures from celsius to kelvin since we are dealing with gas.
To convert to kelvin, add 273.15 to the temperature in celsius.
T1 = 22 + 273.15 = 295.15 k
T2 = 4 + 273.15 = 277.15 k
V1 = 0.5 L
Let's find the final volume (V2).
To solve for V2 apply Charles Law formula below:
Answer:
The other angle is 120°.
Explanation:
Given that,
Angle = 60
Speed = 5.0
We need to calculate the range
Using formula of range
...(I)
The range for the other angle is
....(II)
Here, distance and speed are same
On comparing both range






Hence, The other angle is 120°
i think it’s B. sorry if i’m wrong
Answer:
The wavelength of these signals is as follow:
- Wavelength of 550 kHz is 545.45 m
- Wavelength of 1600 kHz is 187.5 m
Explanation:
Given that:
Frequency = 550 kHz & 1600 kHz
Velocity = 3.0 x 10⁸ m/s
As we know that frequency is expressed by the following equation:
- Frequency = Velocity / Wavelength ---- (1)
For 550 kHz:
The equation can be rearranged as
Wavelength = Velocity / Frequency
Wavelength = (3.0 x 10⁸ m/s) / (550 x 1000 Hz)
Wavelength = 545.45 m
For 1600 kHz:
Wavelength = Velocity / Frequency
Wavelength = (3.0 x 10⁸ m/s) / (1600 x 1000 Hz)
Wavelength = 187.5 m