According to the definition given, non-ionizing means using microwaves on a substance without causing charged ions to form by removing electrons from atoms.
<h3>What kind of energy exist?</h3>
The six primary forms of energy are chemical, electromechanical, photonic, muscular, geothermal, and nuclear fuel. Other research may focus on other forms including electrochemical, psychological, electromagnetic, and others.
<h3>Why is energy such a big deal?</h3>
Energy is a crucial part of our everyday life despite being just a basic human need. The buildings that people have constructed are heated and cooled by energy. Energy is needed to do things like lift your finger, get out of bed, or even merely go along the main corridor.
To know more about energy visit:
brainly.com/question/1932868
#SPJ4
I was going to beg off until tomorrow, but this one is nothing like those others.
Why, at only 40km/hr, we can ignore any relativistic correction, and just go with Newton.
To put a finer point on it, let's give the car a direction. Say it's driving North.
a). From the point of view of the car, its driver, and passengers if any,
the pole moves past them, heading south, at 40 km/hour .
b). From the point of view of the pole, and any bugs or birds that may be
sitting on it at the moment, the car and its contents whiz past them, heading
north, at 40 km/hour.
c). A train, steaming North at 80 km/hour on a track that exactly parallels
the road, overtakes and passes the car at just about the same time as
the drama in (a) and (b) above is unfolding.
The rail motorman, fireman, and conductor all agree on what they have
seen. From their point of view, they see the car moving south at 40 km/hr,
and the pole moving south at 80 km/hr.
Now follow me here . . .
The car and the pole are both seen to be moving south. BUT ... Since the
pole is moving south faster than the car is, it easily overtakes the car, and
passes it . . . going south.
That's what everybody on the train sees.
==============================================
Finally ... since you posed this question as having something to do with your
fixation on Relativity, there's one more question that needs to be considered
before we can put this whole thing away:
You glibly stated in the question that the car is driving along at 40 km/hour ...
AS IF we didn't need to know with respect to what, or in whose reference frame.
Now I ask you ... was that sloppy or what ? ! ?
Of course, I came along later and did the same thing with the train, but I am
not here to make fun of myself ! Only of others.
The point is . . . the whole purpose of this question, obviously, is to get the student accustomed to the concept that speed has no meaning in and of itself, only relative to something else. And if the given speed of the car ...40 km/hour ... was measured relative to anything else but the ground on which it drove, as we assumed it was, then all of the answers in (a) and (b) could have been different.
And now I believe that I have adequately milked this one for 50 points worth.
Answer:
Approximately
.
Explanation:
Assuming that there is no other force on this vehicle, the
force from the road would be the only force on this vehicle. The net force would then be equal to this
force. The size of the net force would be
.
Let
denote the mass of this vehicle and let
denote the net force on this vehicle.
By Newton's Second Law of motion, the acceleration of this vehicle would be proportional to the net force on this vehicle. In other words, the acceleration of this vehicle,
, would be:
.
For this vehicle,
whereas
. The acceleration of this vehicle would be:
.
Answer:
Drought
Explanation:
If you are asking about Number 2. then the answer would be lack of precipitation (rain).
Climate change didn't allow for cold air to meet the warm air to produce precipitation over the run off area of the lake.
Answer:

Explanation:
The electric flux through a certain surface is given by (for a uniform field):

where:
E is the magnitude of the electric field
A is the area of the surface
is the angle between the direction of the field and of the normal to the surface
In this problem, we have:
is the electric field
L = 2.0 m is the side of the sheet, so the area is

, since the electric field is perpendicular to the surface
Therefore, the electric flux is
