The magnitude of maximum magnetic force that could be exerted on the proton is 1.44 x 10^-12 N.
The magnitude of the force on a charged particle moving in a magnetic field is given by the formula,
F= qvB
Here q is the charge on proton = 1.6 x 10^-19 C.
v is the velocity with which the particle is moving = 6.00 x 10^6 m/s
And B is the value of the magnetic field = 1.5 T
Putting the given values in the above equation,
F = 1.6 x 10^-19 x 6 x 10^6 x 1.5 = 1.44 x 10^-12 N.
Hence, the magnitude of maximum magnetic force that could be exerted on the proton is 1.44 x 10^-12 N.
To know more about "magnetic force", refer to the link given below:
brainly.com/question/13791875?referrer=searchResults
#SPJ4
Picture 1 and 2 or am I wrong and it's not that obvious.
Answer: 2.86 m
Explanation:
To solve this question, we will use the law of conservation of kinetic and potential energy, which is given by the equation,
ΔPE(i) + ΔKE(i) = ΔPE(f) + ΔKE(f)
In this question, it is safe to say there is no kinetic energy in the initial state, and neither is there potential energy in the end, so we have
mgh + 0 = 0 + KE(f)
To calculate the final kinetic energy, we must consider the energy contributed by the Inertia, so that we then have
mgh = 1/2mv² + 1/2Iw²
To get the inertia of the bodies, we use the formula
I = [m(R1² + R2²) / 2]
I = [2(0.2² + 0.1²) / 2]
I = 0.04 + 0.01
I = 0.05 kgm²
Also, the angular velocity is given by
w = v / R2
w = 4 / (1/5)
w = 20 rad/s
If we then substitute these values in the equation we have,
0.5 * 9.8 * h = (1/2 * 0.5 * 4²) + (1/2 * 0.05 * 20²)
4.9h = 4 + 10
4.9h = 14
h = 14 / 4.9
h = 2.86 m
Answer:
Number of turns on the secondary coil of the adapter transformer is 10.
Explanation:
For a transformer,

where
is the voltage induced in the secondary coil
is the voltage in the primary coil
is the number of turns of secondary coil
is the number of turns of primary coil
From the given question,
= 
⇒
= 
= 9.999733
∴
= 10 turns
Answer:
Only the goalie is allowed inside the goal crease. The only exception when another player is allowed in the goal area is when they take off from outside the goal area, and shoots or passes the ball before landing. To avoid interference with other players, the player must then exit the goal area as soon as possible.
Explanation: