Answer:
0.137 M NH3
Explanation:
First divide the mass of NH3 by the molar mass of NH3, and then divide by the volume to get molarity.
0.583 g / 17.031 g/mol = 0.0342 mol NH3
0.0342 mol NH3 / 0.250 L = 0.137 M NH3
Sun, use fusion to combine hydrogen atoms into helium atoms,
Answer:
The temperature is always lower.
Explanation:
The temperature is always lower at the end of the state as compared to beginning of the state. We can see in the given data, the temperature is higher at the beginning i. e. 140 degree Celsius but with the passage of time, the temperature of a state decreases constantly and the temperature at the end is lower i. e. 20 degree Celsius. So we can conclude that the temperature is always lower.
Answer:
The solution is 50 %wt
Explanation:
50% wt is a sort of concentration and means, that 50 g of solute (in this case, the potassium bromide) dissolved in 100 g of water.
It is the same to say, that there are 50g of KBr for every 100g of H₂O
Answer:
A) increasing dispersion interactions
Explanation:
Polarizability allows gases containing atoms or nonpolar molecules (for example, to condense. In these gases, the most important kind of interaction produces <em>dispersion forces</em>, <em>attractive forces that arise as a result of temporary dipoles induced in atoms or molecules.</em>
<em>Dispersion forces</em>, which are also called <em>London forces</em>, usually <u>increase with molar mass because molecules with larger molar mass tend to have more electrons</u>, and <u>dispersion forces increase in strength with the number of electrons</u>. Furthermore, larger molar mass often means a bigger atom whose electron distribution is more easily disturbed because the outer electrons are less tightly held by the nuclei.
Because the noble gases are all nonpolar molecules, <u>the only attractive intermolecular forces present are the dispersion forces</u>.