Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
There are many properties to substances.
I'll list some examples below:
- Mass
- Volume
- Density
- Conductivity
- Malleability
- Boiling point
- Melting point
- Heat capacity
Hope this helps! :3
Answer:
Explanation:The atomic number of sodium is 11. That is, the number of electrons in sodium is 11. Therefore, a sodium atom will have two electrons in the first shell, eight in the 2nd orbit, and an electron in the 3rd shell.
The compound is Al2O3. The ratio of aluminum to oxygen is 2:3.
Answer:
A free body diagram is used to calculate static and dynamic forces acting on an object. In other words, a free body diagram is the starting point to develop a mathematical model to find and calculate various forces acting on a body.
Explanation: