<h2>
Half Life</h2>
The half life period is the time in which only half of the given population remains. It can be represented through this equation:

- <em>t</em> = time passed
- <em>a</em> = y-intercept
- <em>h</em> = half life
<h2>Solving the Question</h2>
We're given:
- <em>h</em> = 28 million years
- <em>a</em> = 184 grams (this is the initial mass, after 0 time has passed)
For most questions like this, we would have to plug these values into the equation mentioned above. However, this question asks for the time elapsed after 3 half-lives.
This can be calculated simply by multiplying the given half-life by 3:
28 million years x 3
= 84 million years
<h2>Answer</h2>
84 million years
Answer:
809 km²
Step-by-step explanation:
I can split this into 3 rectangles. One is 25 by 17, another is 24 by 13, and the last one is 6 by 12. (I had gotten 13 for the second rectangle because 25 - 12 = 13.)
(25 * 17) + (24 * 13) + (6 * 12) <em>{17 is the first number after a multiple of 4 (16). As a result, 25 by 17 will end in "25." 25 by 17 is 425.}</em>
425 + (24 * 13) + (6 * 12) <em>{24 by 13 is 312.}</em>
425 + 312 + (6 * 12) <em>{6 by 12 is 72.}</em>
425 + 312 + 72 <em>{From left to right, add 425, 312, and 72 to get 809}</em>
737 + 72
809 km²
The area of this figure is 809 km².
The differnce quotient is basically taking the derivitive (result will be f'(x)=5, but anyway)
here is the disffernce quotient

so
for your equation



h's cancel and you are left with 5
the differnce quotient is 5
the answer is each friend gets 2/3 cookie