It's only a small difference (103 degrees versus 104 degrees in water),
and I believe the usual rationalization is that since F is more
electronegative than H, the electrons in the O-F bond spend more time
away from the O (and close to the F) than the electrons in the O-H bond.
That shifts the effective center of the repulsive force between the
bonding pairs away from the O, and hence away from each other. So the
repulsion between the bonding pairs is slightly less, while the
repulsion between the lone pairs on the O is the same -- the result is
the angle between the bonds is a little less.
Hope this helps!
Answer: 2.52 M
Explanation:
The product of molarity (moles/litre) and volume in litres yields moles, and the numbers of moles in two solutions means dilute and concentrated are equal, which is expressed by the following equation:


One isomer is formed
1,1- Dichloroethane is the isomer.
If another hydrogen of c2h5cl is replaced by a chlorine atom to yield c2h4cl2, it would result in one isomer.
- In contrast to 1,2-dichloroethane, which has two chlorine atoms connected to distinct carbon atoms, 1,1-dichloroethane has two chlorine atoms bound to the same carbon atom.
- Isomers are each of two or more compounds having the same formula but various atom arrangements in the molecule and unique characteristics.
<h3>What three types of isomers are there?</h3>
- Chain isomers
- Functional group isomers
- Positional isomers
These are the three different categories of structural isomers.
<h3>How is an isomer recognized?</h3>
- Their bonding patterns and the way they occupy three-dimensional space can be used to distinguish them.
- Determine the bonding patterns of structural (constitutional) isomers.
- Although the atoms in the compounds are the same, their connections create various functional groups.
<h3>What makes isomers significant?</h3>
- Because two isomers might have the same chemical formula but different chemical structures, they are significant.
- The molecule's properties are influenced by its structure.
To learn more about isomers visit:
brainly.com/question/12796779
#SPJ4
Answer:
molar mass of methane CH4
= C + 4 H
= 12.0 + 4 x 1.008
= 12.0 + 4.032
= 16.042g/mol
7.31 x 10^25 molecules x 1 mole CH4 = 121.43 moles
6.02 x 10^23 CH4 molecules
121.43 moles CH4 are present.
Explanation:
not to certain if this is right or not.. but hope it helps!