Answer:Answer: The step that is NOT necessary to complete before a cuvette is placed into the spectrophotometer is option B (Write, in ink, either sample or blank on the side of the cuvette to keep track of them)
Explanation: spectrophotometer is an instrument used to measure the light intensity absorbed after being passed through a solution. Before the absorbance of the sample solution, a solvent solution called blank is used for the calibration of the machine and this blank solvent is placed in a cuvette. The procedure usually comes first before the main sample is processed. Therefore there is no need to
Write, in ink, either sample or blank on the side of the cuvette to keep track of them. This is so since sample and blank is not absorbed at the same time by the machine.
Answer:
moon, planet, sun, solar system, galaxy, Universe
Explanation:
I am not fully sure but I think this is right
but I apologize if it is wrong

<h3><u>Basic </u><u>Characteristic </u><u>of </u><u>acids </u></h3>
- Acids are sour in taste
- Acid turns blue litmus paper or solution into red litmus paper or solution
- Acids are good conductor of electricity because it dissociate into cation in aqueous solution
- Acids classified into edible acids and non edible acids. Non edible acids are very hazardous
- Generally, All acids are soluble in water
- Acids have PH smaller than 7
<u>Arrhenius </u><u>definition </u><u>of </u><u>acids </u><u>:</u><u>-</u>
According to Arrehinus,
- Acids are those substances which when dissolve in water given H positive ions . Then, this hydrogen ions combine with water to form H30 + ions
<u>Second </u><u>definition </u><u>of </u><u>Acids </u><u>was </u><u>given </u><u>by </u><u>Bonsted </u><u>Lowry </u><u>:</u><u>-</u>
According to Bonsted Lowry
- Acids are the proton donors that is when acids dissociate into water gives hydrogen ions that is H+ ions
<u>3rd </u><u>definition </u><u>was </u><u>given </u><u>by </u><u>Lewis </u>
According to Lewis
- Acids are those substances which have the ability to accept a pair of electrons .
Example of Acids
- HNO3 :- Nitric acid
- H2SO4 :- Sulfuric acid
- HCl :- Hydrochloric acid
<h3><u>Basic </u><u>characterists </u><u>of </u><u>bases </u></h3>
- Bases are bitter in taste
- Bases turns red litmus paper into blue litmus paper or solution
- Bases are also good conductor of electricity because on dissociation it produces anion in aqueous solution
- Bases are also good conductor of electricity
- When bases are soluble in water then they are known as alkaline base
- Bases have PH greater than 7
<u>Arrehinus definition of bases :-</u>
According to Arrehinus ,
- Bases are those substances which when dissolve in water produce OH negative ions that is hydroxide ions
<u>Bonsted Lowry definition </u>
According to Bonsted Lowry
- Bases are the proton donors as they produce OH negative ions in dissociation in aqueous solution
<u>Lewis </u><u>definition </u>
According to Lewis
- Acids are those substances which have the ability to lose electrons that is they are electron donors.
Example of bases
- Ca(OH)2 :- Calcium hydroxide
- NaOH :- Sodium hydroxide
- KOH :- Potassium hydroxide
[ Note :- There are so many Lewis acids and bases but they are not Arrhenius or Lowry acids or bases ]
<h3><u>Basic </u><u>characteristic </u><u>of </u><u>salt </u></h3>
- Salts are the ionic compounds which are composed of acids and bases that cation and anion
- Salts are generally found in oceans and seas in the forms of crystals
- As they are composed of acids and bases so they are neutral in nature but the salt of strong acid or weak base is acidic in nature or vice versa
- Salts are also good conductor of electricity as they form ionic bond
- Generally, All salts are soluble in water.
- The PH of common Salt is 7
Example of salts
- NH4Cl :- Ammonium chloride
- CuSO4 :- Copper sulphate
- NaCl :- Sodium chloride
Answer:Ian is looking at cells using a microscope. He sees a nucleus and a large vacuole in the central area of a cell. What type of cell is he most likely looking at?
Explanation:
Ian is looking at cells using a microscope. He sees a nucleus and a large vacuole in the central area of a cell. What type of cell is he most likely looking at?