The balanced chemical equation would be as follows:
<span>K2PtCl4(aq) + 2NH3(aq) --> Pt(NH3)2Cl2(s) + 2KCl(aq)
We are given the amount of </span>K2PtCl4 to be used in the reaction. This will be the starting point for our calculations. We do as follows:
65 g K2PtCl4 ( 1 mol / 415.09 g ) ( 1 mol Pt(NH3)2Cl2 / 1 mol K2PtCl ) ( 300.051 g / 1 mol ) = 46.99 g Pt(NH3)2Cl produced
Transcribed image text: Four liquids are described in the table below. Use the second column of the table to explain the order of their freezing points, and the third column to explain the order of their boiling points. For example, select '1' in the second column next to the liquid with the lowest freezing point. Select '2' in the second column next to the liquid with the next higher freezing point, and so on. In the third column, select '1' next to the liquid with the lowest boiling point, '2' next to the liquid with the next higher boiling point, and so on. Note: the density of water is 1.00g/mL .
The element that starts with Ne is Neon.
Answer:
Covalent bonds
Explanation:
There are about three kinds of bonds in chemistry;
Ionic bonds
Covalent bonds
Metallic bonds
Substances that possess ionic and metallic bonds all have high melting and boiling points.
However, covalent molecules often have low melting and boiling points due to weak intermolecular forces in the solid state. They also have a dull appearance and do not dissolve in water.