Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high <u>electronegativity</u> as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an <u>inductive effect</u>. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be <u>weaker</u> and the compound will be more acid (because is easier to produce the hydronium ion
).
With this in mind, for A in the last compound, we have <u>2 Br atoms</u> near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have <u>more acidity</u>. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the <u>position</u> of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a <u>higher inductive effect</u> and more <u>acidity</u>.
See figure 1
I hope it helps!
The DNA is identical because all of your cells came from that one cell through mitosis which gives and exact copy of the DNA. All body cells got the complete "instruction manual" for the body, but only uses the proteins needed.
Answer:
12 moles of cesium xenon heptafluoride
Explanation:
The reaction of cesium fluoride with xenon hexafluoride is CeF + XeF6 -> CeXeF7 and the reaction is balanced as written. So the mole ratio is 1:1:1. We are given 12 moles of CeF and 14 moles of XeF6 are reacting, but after the 12 moles of CeF react completely, the reaction will stop as we have run out of one of our reactants. So only 12 moles of CeXeF7 will be produced.
Answer:
7
Explanation:
Given that the total charge is given by;
C =nq
Where;
n = number of charges
q = quantity of charge
Where the total amount of charge is -1.12 x 10-18 C and the magnitude of each charge is -1.602 x 10-19 C
Then the number of electrons is obtained from;
n = -1.12 x 10-18 C/ -1.602 x 10-19 C
n = 7
When hydrogen atoms are energized by electricity, an emission spectrum of specific colors occurs because of the different wavelengths.