<span>Transmission electron microscope -
The transmission electron microscope uses electrons instead of light
. a light microscope is limited by the wavelength of light.
TEMs use electrons as "light source" and their much lower wavelength makes it possible to get a resolution a thousand times better than with a light microscope
.
The possibility for high magnifications has made the TEM a valuable tool in both medical, biological and materials research.</span><span>Compound light microscope
- Microscope with more than one lens and its own light source
. There are ocular lenses in the bonicular eyepieces and objective lenses in a rotating nosepiece closer to the specimen.
To ascertain the power of magnification of a compund light microscope, it's needed to take the power of the objective lens and multiply it by the eyepiece which is generally 10x.
Although sometimes found as monocular with one ocular lens, the compound binocular microscope is more commonly used today.
The first light microscope dates back to 1595, when Zacharias Jansen created a compound microscope that used collapsing tubes and produced magnifications up to 9X.
</span>
Answer:
I don't know
Explanation:
you need then search here
Answer:
Explanation:
Given
For first case
launch angle 
at highest point 


For second case

at highest Point velocity is 

as there is no acceleration in x direction therefore horizontal velocity is same
A limestone plateau has no surface water. All the water is pulled underground through cracks and crevices in the surface. What most likely will cause the underground of the plateau to change over time?
Physical weathering due to frost wedging
Physical weathering due to abrasion
Chemical weathering due to oxygen
Chemical weathering due to water <em>Correct Answer</em>
Answer:
I_total = L² (m + M / 3)
Explanation:
The moment of inertia is defined by
I = ∫ r² dm
It is appreciated that it is a scalar quantity, for which it is additive, in this case the system is formed by two bodies and the moment of inertia must be the sum of each moment of inertia with respect to the same axis of rotation.
The moment of inertia of a bar with respect to an axis that passes through ends is
I_bar = 1/3 M L²
The moment of inertia of a particle is
I_part = m x²
We have to assume the point where the particle sticks to the bar, suppose it sticks to the end
x = L
Total moment of inertia is the sum of these two moments of inertia
I_total = I_bar + I_particule
I_total = 1/3 M L² + m L²
I_total = L² (m + M / 3)