Answer:
If we’re talking about objects on the Earth, the gravitational potential energy is given by:
Explanation:
PEg=mgh
so the energy is proportional to the mass ( m ), but also to the strength of the gravitational field ( g ), and the height ( h ) to which the mass is lifted.
A “real” image occurs when light rays actually intersect at the image, and become inverted, or turned upside down. ... In flat, or plane mirrors, the image is a virtual image, and is the same distance behind the mirror as the object is in front of the mirror. The image is also the same size as the object.
The answer is to your question is c
Answer:
F = 0.00156[N]
Explanation:
We can solve this problem by using Newton's proposed universal gravitation law.

Where:
F = gravitational force between the moon and Ellen; units [Newtos] or [N]
G = universal gravitational constant = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1= Ellen's mass [kg]
m2= Moon's mass [kg]
r = distance from the moon to the earth [meters] or [m].
Data:
G = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1 = 47 [kg]
m2 = 7.35 * 10^22 [kg]
r = 3.84 * 10^8 [m]
![F=6.67*10^{-11} * \frac{47*7.35*10^{22} }{(3.84*10^8)^{2} }\\ F= 0.00156 [N]](https://tex.z-dn.net/?f=F%3D6.67%2A10%5E%7B-11%7D%20%2A%20%5Cfrac%7B47%2A7.35%2A10%5E%7B22%7D%20%7D%7B%283.84%2A10%5E8%29%5E%7B2%7D%20%7D%5C%5C%20F%3D%200.00156%20%5BN%5D)
This force is very small compare with the force exerted by the earth to Ellen's body. That is the reason that her body does not float away.