Answer and Explanation:
The ball is bouncing to a height of 1/3 of its previous height this is a type of geometric sequence the total distance can be found by the sum of geometric sequence
For example let the initial height is 243 fit
After one bounce it will reach 243/3 =81 feet
After second bounce 81/3=27 feet
After third bounce 27/3 =9 feet
After fourth bounce 9/3 =3 feet
So a sequence is formed that is 243,81,27,9,3..........
Here 
Sum of infinite GP = 
From this formula we can find the total distance traveled by the ball
Answer:
The electromagnetic spectrum comprise a lot of waves length. Usually, different waves length are called as different lights, and a light source can emit in more than a different wave length, as the sun does, for example. The sun emit the visible light, UV light, infrared, etc.
Biosphere is the answer, hope i helped :))
Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.
In the reaction between 1 molecule of bromine and 2 molecules of potassium chloride, there are six atoms in the products.
Let's consider the balanced equation for the reaction between 1 molecule of bromine and 2 molecules of potassium chloride. This is a single replacement reaction.
Br₂ + 2 KCl ⇒ 2 KBr + Cl₂
We obtain as products, 2 molecules of potassium bromide and 1 molecule of chlorine.
- 1 molecule of KBr has 2 atoms, so 2 molecules contribute with 4 atoms.
- 1 molecule of Cl₂ has 2 atoms.
- The 4 atoms from KBr and the 2 atoms from Cl₂ make a total of 6 atoms.
In the reaction between 1 molecule of bromine and 2 molecules of potassium chloride, there are six atoms in the products.
Learn more: brainly.com/question/21850455