Answer:
C. An external downward field is created or an external downward field is removed
Explanation:
As we can see that from the attached figure that the induced current would be counter clockwise. So the field occur because of induced current i.e. out of page. This represent that the current is induced in order to rise the flux out of the direction of the page
Therefore because of the external field, the field out of page & flux would be reducing or the external upward field is eliminated
So option C is correct
Answer:
If there is no damping, the amount of transmitted vibration that the microscope experienced is = 
Explanation:
The motion of the ceiling is y = Y sinωt
y = 0.05 sin (2 π × 2) t
y = 0.05 sin 4 π t
K = 25 lb/ft × 4 sorings
K = 100 lb/ft
Amplitude of the microscope ![\frac{X}{Y}= [\frac{1+2 \epsilon (\omega/ W_n)^2}{(1-(\frac{\omega}{W_n})^2)^2+(2 \epsilon \frac{\omega}{W_n})^2}]](https://tex.z-dn.net/?f=%5Cfrac%7BX%7D%7BY%7D%3D%20%5B%5Cfrac%7B1%2B2%20%5Cepsilon%20%28%5Comega%2F%20W_n%29%5E2%7D%7B%281-%28%5Cfrac%7B%5Comega%7D%7BW_n%7D%29%5E2%29%5E2%2B%282%20%5Cepsilon%20%20%5Cfrac%7B%5Comega%7D%7BW_n%7D%29%5E2%7D%5D)
where;


= 
= 4.0124
replacing them into the above equation and making X the subject of the formula:



Therefore; If there is no damping, the amount of transmitted vibration that the microscope experienced is = 
Answer:
Paying for employees seminars and workshops related to their careers
Explanation:
To motivate personal development among employees, several things can be done. Among them, giving employees chance to present their own solutions to problems, exposing the employees to several global challenges and how to handle them, paying for employees seminars and workshops related to their own careers for professional development among other things.
Answer:
YFy = 0 = Ffsinθ + Fncosθ - Fw
Explanation:
From the base of the vector Fn, draw a vertical line. the small angle between this line and Fn is also theta. The component of Fn in the vertical direction is Fncos(theta).
Take a moment to picture extreme cases. Sine is 0 at 0 and 1 at 90. Cosine is 1 at 0 and 0 at 90.
Tilt the incline so that the box is on a flat surface. How much of the gravitational force is along the x direction of the floor.
Answer:
Solving for time :
(There are 4 formulas from linear motion. These formulas are very helpful as it allows us to prevent complicated calculations. Choose among the four that has : 1. The most constants known
2. The unknown constant that we want to solve)
s = (1/2)(u+v)t <--- one of the formulas
from linear motion
s (distance) = 0.05m
u (initial velocity) = 100m/s
v (final velocity) = 0 m/s (it stops)
t (time taken for change in velocity) = to be found
0.05 = (1/2)(100+0)t
t = 0.001 seconds
Solving for the resistant force :
Since the bullet hits the bag with an impulsive force and stops, the force that stops the bullet is the resistant force.
When the bullet stops :
F net = 0
F r = F imp
F r = (mu -mv)/t
F r = (0.01x100-0.01x0)/0.001
F r = 1/0.001
F r = 1000N