Answer:
The period of oscillation is 1.33 sec.
Explanation:
Given that,
Mass = 275.0 g
Suppose value of spring constant is 6.2 N/m.
We need to calculate the angular frequency
Using formula of angular frequency

Where, m = mass
k = spring constant
Put the value into the formula


We need to calculate the period of oscillation,
Using formula of time period

Put the value into the formula


Hence, The period of oscillation is 1.33 sec.
Answer:
Damage from UV exposure is cumulative and increases your skin cancer risk over time. While your body can repair some of the DNA damage in skin cells, it can't repair all of it. The unrepaired damage builds up over time and triggers mutations that cause skin cells to multiply rapidly. That can lead to malignant tumors.
Answer:
320 N/m
Explanation:
From Hooke's law, we deduce that
F=kx where F is applied force, k is spring constant and x is extension or compression of spring
Making k the subject of formula then

Conversion
1m equals to 100cm
Xm equals 25 cm
25/100=0.25 m
Substituting 80 N for F and 0.25m for x then

Therefore, the spring constant is equal to 320 N/m
Answer:
Car H
Explanation:
Frictional force is a resistant force. It is given as:
F = u*m*g
Where u = coefficient of friction
m = mass
g = acceleration due to gravity
From the formula above, we see that frictional force is dependent on the mass of object and the coefficient of friction.
Since they all have the same tires, the coefficient of friction between the tire and the floor is the same for each car. Acceleration due to gravity, g, is constant.
The only factor that determines the frictional force of each car is the mass. Hence, the more the mass, the more the frictional force.
So, the most massive car will have the most frictional force and hence, will come to a stop quicker than the others. The least massive car will have the least frictional force and so, will take a longer time to stop.