A small boy is playing with a ball on a stationary train. If he places the ball on the floor of the train, when the train starts moving the ball moves toward the back of the train. This happened due to inertia
An object at rest remains at rest, or if in motion, remains in motion unless a net external force acts on it .
When a train starts moving forward, the ball placed on the floor tends to fall backward is an example of inertia of rest. Due to the reason that the lower part of the ball is in contact with the surface and rest of the part is not . As the train starts moving, its lower part gets the motion as the floor starts moving but the upper part will remain as it is as it is not in contact with the floor , hence do not attain any motion due to the inertia of rest simultaneously i.e. it tends to remain at the same place.
To learn more about inertia here :
brainly.com/question/11049261
#SPJ1
To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s
Answer:
1807
Explanation:
Robert Fulton (1765–1815) was an American engineer and inventor who is widely known for developing a commercially successful steamboat called Clermont. In 1807, that steamboat took passengers from New York City to Albany and back again, a round trip of 300 miles, in 62 hours.
Answer:
3.6 KJ
Explanation: Given that a 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy
The workdone = the energy.
There are two different energies in the scenario - the potential energy (P.E ) and the kinetic energy ( K.E )
P.E = mgh
P.E = 70 × 9.8 × 1.6
P.E = 1097.6 J
P.E = 1.098 KJ
K.E = 1/2mv^2
K.E = 1/2 × 70 × 8.5^2
K.E = 2528.75 J
K.E = 2.529 KJ
The non conservative workdone = K.E + P.E
Work done = 1.098 + 2.529
Work done = 3.63 KJ
Therefore, the non conservative workdone is 3.6 KJ approximately