easy, The fuel is ignited
Angular acceleration = (change in angular speed) / (time for the change)
change in angular speed = (zero - 2,600 RPM) = -2,600 RPM
time for the change = 10 sec
Angular acceleration = -2600 RPM / 10 sec = -260 rev / min-sec
(-260 rev/min-sec) x (1 min / 60 sec) = <em>-(4 1/3) rev / sec²</em>
Since the acceleration is negative, the motor is slowing down.
You might call that a 'deceleration' of (4 1/3) rev/sec² .
The average speed is 1/2(2,600 + 0) = 1,300 rev/min = (21 2/3) rev/sec.
Number of revs = (average speed) x (time) = (21 2/3) x (10sec) = <em>(216 2/3) revs</em>
Answer:
Average velocity v = 21.18 m/s
Average acceleration a = 2 m/s^2
Explanation:
Average speed equals the total distance travelled divided by the total time taken.
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
Average acceleration equals the change in velocity divided by change in time.
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
Where;
v1 and v2 are velocities at time t1 and t2 respectively.
And x1 and x2 are positions at time t1 and t2 respectively.
Given;
t1 = 3.0s
t2 = 20.0s
v1 = 11 m/s
v2 = 45 m/s
x1 = 25 m
x2 = 385 m
Substituting the values;
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
v = (385-25)/(20-3)
v = 21.18 m/s
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
a = (45-11)/(20-3)
a = 2 m/s^2
Answer:
20 seconds
Explanation:
The equation for Power is:

Which means...

We can plug in the given values into the equation:

